中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數,曲線在點處的切線是
(Ⅰ)求的值;
(Ⅱ)若上單調遞增,求的取值范圍

(Ⅰ) ;(Ⅱ)

解析試題分析:(Ⅰ)先求出已知函數的導函數,根據切線方程就可以知道曲線在的函數值和切線斜率,代入函數以及其導函數的解析式求解;(Ⅱ)先由(Ⅰ)得到函數及其導函數的只含有一個參數的解析式,然后根據導數與函數單調性的關系將問題轉化為上的恒成立問題,進行分類討論解不等式即可
試題解析:解:(Ⅰ) 由已知得,          2分
因為曲線在點處的切線是,
所以,即       6分
(Ⅱ)由(Ⅰ)知
因為上單調遞增,所以上恒成立      8分
時,上單調遞增,
又因為,所以上恒成立             10分
時,要使得上恒成立,那么
解得               12分
綜上可知,            14分
考點:1、利用導數研究函數的切線方程;2、函數的單調性與導數的關系3、分類討論思想

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知.
(1)當時,求曲線在點處的切線方程;
(2)若處有極值,求的單調遞增區間;
(3)是否存在實數,使在區間的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知R,函數e
(1)若函數沒有零點,求實數的取值范圍;
(2)若函數存在極大值,并記為,求的表達式;
(3)當時,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(m為常數,e=2.71828…是自然對數的底數),函數 的最小值為1,其中 是函數f(x)的導數.
(1)求m的值.
(2)判斷直線y=e是否為曲線f(x)的切線,若是,試求出切點坐標和函數f(x)的單調區間;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

湖北宜昌“三峽人家”風景區為提高經濟效益,現對某一景點進行改造升級,從而擴大內需,提高旅游增加值,經過市場調查,旅游增加值萬元與投入萬元之間滿足:為常數,當萬元時,萬元;當萬元時,萬元.(參考數據:
(Ⅰ)求的解析式;
(Ⅱ)求該景點改造升級后旅游利潤的最大值.(利潤=旅游收入-投入)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分共12分)已知函數f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過點P(0,2),且在點P處有相同的切線y=4x+2
(Ⅰ)求a,b,c,d的值
(Ⅱ)若x≥-2時,f(x)≤kg(x),求k的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求函數的極值;
(2)若在區間上單調遞增,試求的取值或取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為函數的導函數.
(1)設函數f(x)的圖象與x軸交點為A,曲線y=f(x)在A點處的切線方程是,求的值;
(2)若函數,求函數的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數是自然對數的底數).
(1)若曲線處的切線也是拋物線的切線,求的值;
(2)當時,是否存在,使曲線在點處的切線斜率與 在
上的最小值相等?若存在,求符合條件的的個數;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案