(本小題滿分共12分)已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過(guò)點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2
(Ⅰ)求a,b,c,d的值
(Ⅱ)若x≥-2時(shí),f(x)≤kg(x),求k的取值范圍。
(1)因?yàn)榍y=f(x)和曲線y=g(x)都過(guò)點(diǎn)P(0,2),所以b=d=2;因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/48/1/icnie3.png" style="vertical-align:middle;" />,故
;
,故
,故
;所以
,
;
(2)令
,則
,由題設(shè)可得
,故
,令
得
,
(1)若
,則
,從而當(dāng)
時(shí),
,當(dāng)
時(shí)
,即
在
上最小值為
,此時(shí)f(x)≤kg(x)恒成立;
(2)若
,
,故
在
上單調(diào)遞增,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/77/e/kopwm2.png" style="vertical-align:middle;" />所以f(x)≤kg(x)恒成立
(3)若
,則
,故f(x)≤kg(x)不恒成立;
綜上所述k的取值范圍為
.
解析
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
.
(1)若
時(shí),求
處的切線方程;
(2)當(dāng)
時(shí),
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(
是常數(shù))在
處的切線方程為
,且
.
(Ⅰ)求常數(shù)
的值;
(Ⅱ)若函數(shù)
(
)在區(qū)間
內(nèi)不是單調(diào)函數(shù),求實(shí)數(shù)
的取值范圍;
(Ⅲ)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)設(shè)
,試討論
單調(diào)性;
(2)設(shè)
,當(dāng)
時(shí),若
,存在
,使
,求實(shí)數(shù)
的
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,曲線
在點(diǎn)
處的切線是
:![]()
(Ⅰ)求
,
的值;
(Ⅱ)若
在
上單調(diào)遞增,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
,若
在點(diǎn)
處的切線斜率為
.
(Ⅰ)用
表示
;
(Ⅱ)設(shè)
,若
對(duì)定義域內(nèi)的
恒成立,
(ⅰ)求實(shí)數(shù)
的取值范圍;
(ⅱ)對(duì)任意的
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,
,其中
.
(1)若
是函數(shù)
的極值點(diǎn),求實(shí)數(shù)
的值;
(2)若對(duì)任意的
(
為自然對(duì)數(shù)的底數(shù))都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)![]()
(1)若
,求
的單調(diào)區(qū)間,
(2)當(dāng)
時(shí),
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
=
,
=
,若曲線
和曲線
都過(guò)點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線
.
(Ⅰ)求
,
,
,
的值;
(Ⅱ)若
≥-2時(shí),
≤
,求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com