中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(1)當a=0時,求曲線y=f(x)在點(1,f(1))處的切線的斜率;
(2)當a≠時,求函數y=f(x)的單調區間與極值.

(1)3e.   (2)見解析

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數
(1)若時,函數有三個互不相同的零點,求的取值范圍;
(2)若函數內沒有極值點,求的取值范圍;
(3)若對任意的,不等式上恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

,函數
(1)若x=2是函數的極值點,求的值;
(2)設函數,若≤0對一切都成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

記函數fn(x)=a·xn-1(a∈R,n∈N*)的導函數為f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)設函數gn(x)=fn(x)-n2ln x,試問:是否存在正整數n使得函數gn(x)有且只有一個零點?若存在,請求出所有n的值;若不存在,請說明理由;
(3)若實數x0和m(m>0且m≠1)滿足,試比較x0與m的大小,并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x3-4x2+5x-4.
(1)求曲線f(x)在點(2,f(2))處的切線方程;
(2)求經過點A(2,-2)的曲線f(x)的切線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數 
(1) 當時,求函數的單調區間;
(2) 當時,求函數上的最小值和最大值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數R),為其導函數,且有極小值
(1)求的單調遞減區間;
(2)若,當時,對于任意x,的值至少有一個是正數,求實數m的取值范圍;
(3)若不等式為正整數)對任意正實數恒成立,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數滿足如下條件:當時,,且對任
,都有.
(1)求函數的圖象在點處的切線方程;
(2)求當時,函數的解析式;
(3)是否存在,使得等式
成立?若存在就求出),若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若,求曲線在點處的切線方程;
(2)求函數的單調區間;
(3)設函數.若至少存在一個,使得成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案