已知經(jīng)過(guò)點(diǎn)A(-4,0)的動(dòng)直線l與拋物線G:
相交于B、C,當(dāng)直線l的斜率是
時(shí),
.
(Ⅰ)求拋物線G的方程;
(Ⅱ)設(shè)線段BC的垂直平分線在y軸上的截距為b,求b的取值范圍.
(Ⅰ)
;(Ⅱ)![]()
解析試題分析:該題考察拋物線的方程、韋達(dá)定理、直線和拋物線的位置關(guān)系、向量等基礎(chǔ)知識(shí),考察數(shù)形結(jié)合、綜合分析和解決問(wèn)題能力、基本運(yùn)算能力,(Ⅰ)求直線
的方程:
,和拋物線
聯(lián)立,得![]()
設(shè)
,代入 向量式
中,得
,然后聯(lián)立![]()
可得
∴
,∴拋物線方程為
;(Ⅱ)設(shè)直線
的方程:
,
,線段
的中點(diǎn)
,將
與
聯(lián)立,可得
,因?yàn)橹本與拋物線交與兩點(diǎn)
,所以
,可得
或
,再表示中點(diǎn)
,進(jìn)而可求線段
的中垂線方程,令
,可得其在
軸的截距
,求其值域即可.
試題解析:(1)設(shè)
,由已知k1=
時(shí),l方程為![]()
即x=2y-4.
由
得![]()
∴![]()
又∵![]()
∴
5分
由p>0得
∴
,即拋物線方程為:
.
(2)設(shè)l:
,BC中點(diǎn)坐標(biāo)為![]()
由
得:
①
∴x0=
=2k,y0=k(x0+4)=2k2+4k.
∴BC的中垂線方程為y?2k2?4k=?
(x?2k)
∴BC的中垂線在y軸上的截距為:b=2k2+4k+2=2(k+1)2
對(duì)于方程①由△=16k2+64k>0得:
或
.
∴
12分![]()
考點(diǎn):1、拋物線的標(biāo)準(zhǔn)方程;2、韋達(dá)定理;3、直線方程.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知?jiǎng)訄A經(jīng)過(guò)點(diǎn)
,且和直線
相切,
(1)求動(dòng)圓圓心的軌跡C的方程;
(2)已知曲線C上一點(diǎn)M,且
5,求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的左右焦點(diǎn)分別是
,離心率
,
為橢圓上任一點(diǎn),且
的最大面積為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)斜率為
的直線
交橢圓
于
兩點(diǎn),且以
為直徑的圓恒過(guò)原點(diǎn)
,若實(shí)數(shù)
滿足條件
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
過(guò)點(diǎn)
,離心率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過(guò)點(diǎn)
且斜率為
(
)的直線
與橢圓
相交于
兩點(diǎn),直線
、
分別交直線
于
、
兩點(diǎn),線段
的中點(diǎn)為
.記直線
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)拋物線
的焦點(diǎn)為
,其準(zhǔn)線與
軸的交點(diǎn)為
,過(guò)
點(diǎn)的直線
交拋物線于
兩點(diǎn).
(1)若直線
的斜率為
,求證:
;
(2)設(shè)直線
的斜率分別為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知△ABC中, 點(diǎn)A,B的坐標(biāo)分別為A(-
,0),B(
,0)點(diǎn)C在x軸上方.
(Ⅰ)若點(diǎn)C坐標(biāo)為(
,1),求以A,B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)C的橢圓的方程:
(Ⅱ)過(guò)點(diǎn)P(m,0)作傾斜角為
的直線l交(1)中曲線于M,N兩點(diǎn),若點(diǎn)Q(1,0)恰在以線段MN為直徑的圓上,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線
的焦點(diǎn)為F
過(guò)點(diǎn)
的直線交拋物線于A
,B
兩點(diǎn),直線AF,BF分別與拋物線交于點(diǎn)M,N ![]()
(1)求
的值;
(2)記直線MN的斜率為
,直線AB的斜率為
證明:
為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在
軸上,焦距為
,且經(jīng)過(guò)點(diǎn)
,直線
交橢圓于不同的兩點(diǎn)A,B.
(1)求
的取值范圍;,
(2)若直線
不經(jīng)過(guò)點(diǎn)
,求證:直線
的斜率互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的長(zhǎng)軸兩端點(diǎn)分別為
,
是橢圓上的動(dòng)點(diǎn),以
為一邊在
軸下方作矩形
,使
,
交
于點(diǎn)
,
交
于點(diǎn)
.![]()
(Ⅰ)如圖(1),若
,且
為橢圓上頂點(diǎn)時(shí),
的面積為12,點(diǎn)
到直線
的距離為
,求橢圓的方程;
(Ⅱ)如圖(2),若
,試證明:
成等比數(shù)列.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com