已知函數f(x)=x2-2x,x∈[a,b]的值域為[-1,3],則b-a的取值范圍是________.
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第5課時練習卷(解析版) 題型:解答題
已知函數f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在點(1,g(1))處的切線方程為2y-1=0.
(1)求g(x)的解析式;
(2)設函數G(x)=
若方程G(x)=a2有且僅有四個解,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第3課時練習卷(解析版) 題型:填空題
給定函數:①y=
,②y=
(x+1),③y=|x-1|,④y=2x+1,其中在區間(0,1)上單調遞減的函數是____________.(填序號)
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第2課時練習卷(解析版) 題型:填空題
設函數g(x)=x2-2(x∈R),f(x)=
則f(x)的值域是________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第2課時練習卷(解析版) 題型:解答題
求下列函數的值域:
(1) f(x)=
;
(2) g(x)=
;
(3) y=log3x+logx3-1.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第1課時練習卷(解析版) 題型:填空題
集合M={f(x)|存在實數t使得函數f(x)滿足f(t+1)=f(t)+f(1)},則下列函數(a、b、c、k都是常數):
① y=kx+b(k≠0,b≠0);② y=ax2+bx+c(a≠0);
③ y=ax(0<a<1);④ y=
(k≠0);⑤ y=sinx.
其中屬于集合M的函數是________.(填序號)
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第1課時練習卷(解析版) 題型:解答題
求下列函數f(x)的解析式.
(1) 已知f(1-x)=2x2-x+1,求f(x);
(2) 已知f
=x2+
,求f(x);
(3) 已知一次函數f(x)滿足f(f(x))=4x-1,求f(x);
(4) 定義在(-1,1)內的函數f(x)滿足2f(x)-f(-x)=lg(x+1),求f(x).
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第14課時練習卷(解析版) 題型:解答題
已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函數f(x)在[t,t+2](t>0)上的最小值;
(2)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數a的取值范圍;
(3)證明對一切x∈(0,+∞),都有lnx>
-
成立.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學總復習考點引領+技巧點撥第二章第12課時練習卷(解析版) 題型:解答題
請你設計一個包裝盒,如圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A、B、C、D四個點重合于圖中的點P,正好形成一個正四棱柱形狀的包裝盒,E、F在AB上是被切去的等腰直角三角形斜邊的兩個端點,設AE=FB=xcm.
(1)某廣告商要求包裝盒側面積S(cm2)最大,試問x應取何值?
(2)某廠商要求包裝盒容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com