已知Rt△AOB的三個(gè)頂點(diǎn)都在拋物線y2=2px上,其中直角頂點(diǎn)O為原點(diǎn),OA所在直線的方程為y=
x,△AOB的面積為6
,求該拋物線的方程.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
雙曲線
的中心在原點(diǎn),右焦點(diǎn)為
,漸近線方程為
.
(1)求雙曲線
的方程;
(2)設(shè)直線
:
與雙曲線
交于
、
兩點(diǎn),問:當(dāng)
為何值時(shí),以
為直徑的圓過原點(diǎn);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線
=1(a>0,b>0)的一個(gè)焦點(diǎn),并與雙曲線實(shí)軸垂直,已知拋物線與雙曲線的一個(gè)交點(diǎn)為
,求拋物線與雙曲線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
=1(a>b>0)的離心率為
,短軸的一個(gè)端點(diǎn)為M(0,1),直線l:y=kx-
與橢圓相交于不同的兩點(diǎn)A、B.
(1)若AB=
,求k的值;
(2)求證:不論k取何值,以AB為直徑的圓恒過點(diǎn)M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求滿足下列條件的拋物線的標(biāo)準(zhǔn)方程,并求對應(yīng)拋物線的準(zhǔn)線方程.
(1)過點(diǎn)(-3,2);
(2)焦點(diǎn)在直線x-2y-4=0上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的焦距為2,且過點(diǎn)
.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右焦點(diǎn)分別為
,
,過點(diǎn)
的直線
與橢圓C交于
兩點(diǎn).
①當(dāng)直線
的傾斜角為
時(shí),求
的長;
②求
的內(nèi)切圓的面積的最大值,并求出當(dāng)
的內(nèi)切圓的面積取最大值時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,動(dòng)點(diǎn)M為右準(zhǔn)線上一點(diǎn)(異于右準(zhǔn)線與x軸的交點(diǎn)),設(shè)線段FM交橢圓C于點(diǎn)P,已知橢圓C的離心率為
,點(diǎn)M的橫坐標(biāo)為
.![]()
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,動(dòng)點(diǎn)
到兩定點(diǎn)
、
構(gòu)成
,且
,設(shè)動(dòng)點(diǎn)
的軌跡為
。![]()
(1)求軌跡
的方程;
(2)設(shè)直線
與
軸交于點(diǎn)
,與軌跡
相交于點(diǎn)
,且
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
+y2=1的左頂點(diǎn)為A,過A作兩條互相垂直的弦AM、AN交橢圓于M、N兩點(diǎn).
(1)當(dāng)直線AM的斜率為1時(shí),求點(diǎn)M的坐標(biāo);
(2)當(dāng)直線AM的斜率變化時(shí),直線MN是否過x軸上的一定點(diǎn)?若過定點(diǎn),請給出證明,并求出該定點(diǎn);若不過定點(diǎn),請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com