如圖,在四棱錐O—ABCD中,底面ABCD是邊長為1的正方形,OA⊥底面ABCD,OA=2,M為OA中點(diǎn)。![]()
(1)求證:直線BD⊥平面OAC;
(2)求直線MD與平面OAC所成角的大小;
(3)求點(diǎn)A到平面OBD的距離。
(1)詳見解析;(2)30°;(3)
.
解析試題分析:方法一:向量法以A為原點(diǎn),AB,AD,AO分別x軸,y軸,z軸建立空間直角坐標(biāo)系,A-xyz (1)利用向量的數(shù)量積的坐標(biāo)運(yùn)算與垂直的關(guān)系,∵
=(-1,1,0),
=(0,0,2),
=(1,1,0)∴
=0,
=-1+1=0∴BD⊥AD,BD⊥AC,又AO∩AC=A故BD⊥平面OAC ;
(2)取平面OAC的法向量
=(-1,1,0),又
=(0,1,-1)[ K則:![]()
∴
=60°故:MD與平面OAC所成角為30°;
(3)設(shè)平面OBD的法向量為
=(x,y,z),則![]()
取
=(2,2,1)則點(diǎn)A到平面OBD的距離為d=
;
方法二:幾何法(1)由線面垂直的的判斷定理證明,由OA⊥底面ABCD,OA⊥BD,∵底面ABCD是邊長為1的正方形∴BD⊥AC ∴BD⊥平面OAC ;(2)先構(gòu)造線面所成的角,設(shè)AC與BD交于點(diǎn)E,連結(jié)EM,則∠DME是直線MD與平面OAC折成的角,又由于∵M(jìn)D=
,DE=
∴直線MD與平面OAC折成的角為30°;(3)構(gòu)造點(diǎn)到面的距離,作AH⊥OE于點(diǎn)H,∵BD⊥平面OAC∴BO⊥AH
線段AH的長就是點(diǎn)A到平面OBD的距離,有AH=
可知點(diǎn)A到平面OBD的距離為
.
試題解析:方法一:以A為原點(diǎn),AB,AD,AO分別x軸,y軸,z軸建立空間直角坐標(biāo)系,A-xyz。
(1)∵
=(-1,1,0),
=(0,0,2),
=(1,1,0)
∴
=0,
=-1+1=0
∴BD⊥AD,BD⊥AC,又AO∩AC=A
故BD⊥平面OAC 4分
(2)取平面OAC的法向量
=(-1,1,0),又
=(0,1,-1)[來源:學(xué)科網(wǎng)ZXXK]
則:![]()
∴
=60°
故:MD與平面OAC所成角為30° 8分
(3)設(shè)平面OBD的法向量為
=(x,y,z),則![]()
取
=(2,2,1)
則點(diǎn)A到平面OBD的距離為d=
12分
方法二:(1)由OA⊥底面ABCD,OA⊥BD。
∵底面ABCD是邊長為1的正方形
∴BD⊥AC ∴BD⊥平面OAC 4分
(2)設(shè)AC與BD交于點(diǎn)E,連結(jié)EM,則∠DME是直線MD與平面OAC折成的角
∵M(jìn)D=
,DE=![]()
∴直線MD與平面OAC折成的角為30° 8分
(3)作AH⊥OE于點(diǎn)H。
∵BD⊥平面OAC
∴BO⊥AH
線段AH的長就是點(diǎn)A到平面OBD的距離。
∴AH=![]()
∴點(diǎn)A到平面OBD的距離為
12分
考點(diǎn):1.線面垂直的的判斷定理;2.線面成角.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐
的底面的菱形,
,點(diǎn)
是
邊的中點(diǎn),
交于點(diǎn)
,![]()
![]()
(1)求證:
;
(2)若
的大小;
(3)在(2)的條件下,求異面直線
與
所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖, 已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且
,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.![]()
(1)求證:AG
平面BDE;
(2)求:二面角G
DE
B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直角梯形
中,
,點(diǎn)
分別是
的中點(diǎn),點(diǎn)
在
上,沿
將梯形
翻折,使平面![]()
平面
.![]()
(1)當(dāng)
最小時,求證:
;
(2)當(dāng)
時,求二面角
平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在多面體ABCD-A1B1C1D1中,上、下兩個底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.![]()
(1)求異面直線AB1與DD1所成角的余弦值;
(2)已知F是AD的中點(diǎn),求證:FB1⊥平面BCC1B1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在多面體ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,BA⊥AC,ED⊥DG,EF∥DG,且AC=1,AB=ED=EF=2,AD=DG=4.
(1)求證:BE⊥平面DEFG;
(2)求證:BF∥平面ACGD;
(3)求二面角F-BC-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等腰梯形ABCD中,AD∥BC,AD=
BC,∠ABC=60°,N是BC的中點(diǎn),將梯形ABCD繞AB旋轉(zhuǎn)90°,得到梯形ABC′D′(如圖).![]()
(1)求證:AC⊥平面ABC′;
(2)求證:C′N∥平面ADD′;
(3)求二面角A-C′N-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在三棱錐SABC中,底面是邊長為2
的正三角形,點(diǎn)S在底面ABC上的射影O恰是AC的中點(diǎn),側(cè)棱SB和底面成45°角.![]()
(1)若D為側(cè)棱SB上一點(diǎn),當(dāng)
為何值時,CD⊥AB;
(2)求二面角S-BC-A的余弦值大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知正四棱錐P-ABCD的所有棱長都是2,底面正方形兩條對角線相交于O點(diǎn),M是側(cè)棱PC的中點(diǎn).![]()
(1)求此正四棱錐的體積.
(2)求直線BM與側(cè)面PAB所成角θ的正弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com