中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數
(1)若a=3,點P為曲線y=f(x)上的一個動點,求以點P為切點的切線斜率取最小值時的切線方程;
(2)若函數y=f(x)在(0,+∞)上為單調增函數,試求a的取值范圍.
【答案】分析:(1)設出切線的斜率為k,把a=3代入f(x)確定出解析式,根據f(x)的解析式求出導函數,根據二次函數求最值的方法得到導函數的最小值即為斜率k的最小值,然后把x=3代入f(x)中求出f(3)即為切點的縱坐標,得到切點坐標,根據切點坐標和斜率k的最小值寫出切線方程即可;
(2)求出f(x)的導函數,由函數在x大于0時為增函數,得到對于x大于0時,導函數值恒大于等于0,令導函數大于等于0,解出a小于等于一個關系式,利用基本不等式求出這個關系式的最小值,即可得到a的取值范圍.
解答:解:(1)設切線的斜率為k,
則f'(x)=x2-6x+10=(x-3)2+1,(2分)
顯然當x=3時切線斜率取最小值1,
又f(3)=12,(4分)
∴所求切線方程為y-12=x-3,即x-y+9=0.(6分)
(2)f'(x)=x2-2ax+10.(8分)
∵y=f(x)在x∈(0,+∞)為單調遞增函數
即對任意的x∈(0,+∞),恒有f'(x)≥0,(10分)
即f'(x)=x2-2ax+10≥0.
,(12分)
,當且僅當時,等號成立,
.(14分)
點評:此題考查學生會利用導數求曲線上過某點切線方程的斜率,掌握不等式恒成立時滿足的條件,掌握函數的單調性與導數的關系,會利用基本不等式求函數的最小值,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數數學公式
(1)若a<0,則f(x)的定義域為______;
(2)若f(x)在區間(0,1]上是增函數,則實數a的取值范圍為______.

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年銀川一中二模文) (12分)已知函數

   (1)若a,b都是從0,1,2,3,4五個數中任取的一個數,求上述函數有零點的概率.

   (2)若a,b都是從區間[0,4]任取的一個數,求f(1)>0成立時的概率.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江蘇省南通市西亭高級中學高三(上)期中數學復習試卷(五)(解析版) 題型:解答題

已知函數
(1)若a=0,求不等式f(x)≥0的解集;
(2)若對于一切x∈(0,+∞),不等式f(x)≥1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江蘇省南通市西亭高級中學高三(上)期中數學復習試卷(五)(解析版) 題型:解答題

已知函數
(1)若a=0,求不等式f(x)≥0的解集;
(2)若對于一切x∈(0,+∞),不等式f(x)≥1恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案