中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知數列是等差數列,且
(1)求數列的通項公式; (2)令,求數列前n項和.

(1)(2)

解析試題分析:解:(1)數列{an}是等差數列,且a1=1,a1+a2+a3=12,設出公差為d,∴a1+a1+d+a1+2d=12,∴a1+d=4,可得2+d=4,解得d=2,∴an=a1+(n-1)d=1+(n-1)×2=2n+1,(2)數列{an}的通項公式為an=n•2n,設其前n項和為Sn,∴Sn=1•21+2•22+3•23+…+n•2n
2Sn=1•22+2•23+3•24+…+n•2n+1
①-②可得-Sn=21+22+23+…+2n-n•2n+1
∴-Sn=-2+22+23++…+2n -n•2n+1
∴Sn=n×2n+1-2n+1+2=(n-1)2n+1+2;

考點:等差數列,數列的求和
點評:主要是考查了等差數列的定義,以及通項公式的運用,以及錯位相減法來求解數列的和,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設數列滿足 
(Ⅰ)求數列的通項公式;
(Ⅱ)令,求數列的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的前項和為 ,對于任意的恒有    
(1) 求數列的通項公式 
(2)若證明: 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知首項為的等比數列的前n項和為, 且成等差數列.
(Ⅰ) 求數列的通項公式;
(Ⅱ) 證明.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在數列中,已知.
(Ⅰ)求數列的通項公式;
(Ⅱ)求證:數列是等差數列;
(Ⅲ)設數列滿足,求的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列,記
),若對于任意成等差數列.
(Ⅰ)求數列的通項公式;
(Ⅱ) 求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的首項,且
①設,求證:數列為等差數列;②設,求數列的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設數列前n項和,且.
(Ⅰ)試求數列的通項公式;
(Ⅱ)設,求數列的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

數列中,,用數學歸納法證明:

查看答案和解析>>

同步練習冊答案