(1) 給定正整數(shù)n
5,集合 An=
.是否存在一一映射
: An
An滿足條件:對一切k ( 1
k
n-1 ) , 都有k |
(1)+
(2) +……+
(k) ?
(2) N* 為全體正整數(shù)的集合,是否存在一一映射
: N*
N* 滿足條件:對一切k
N*, 都有k |
(1)+
(2) + ……+
(k) ?
證明你的結(jié)論 .
注: 映射
: A
B 稱為一一映射,如果對任意 b
B,有且只有一個 a
A 使得
(a)=b . 題中“|”為整除符號.
解析:(1) 不存在. ( 5 分)記 S k =
.當(dāng) n = 2m+1 時 ( m
2 ), 由 2m | S 2 m 及S 2 m=
-
(2m+1) 得
(2m+1)
m+1(mod 2m), 但
(2m+1)
A 2m+1,故
(2m+1)= m+1.再由 2m-1 | S2m-1及
S2m-1=
-(m+1)-
(2m) 得
(2m)
m+1(mod 2m-1),又有
(2m)= m+1,與![]()
的一一性矛盾. ( 5 分)
當(dāng) n = 2m+2 時 ( m
2 ), S2m+1=
-
(2m+2) 給出
(2m+2)=1 或 2m+2,
同上又得
(2m+1)=
(2m)= m+2 或 m+1 ,矛盾. ( 5 分)
(2) 存在. 對n 歸納定義
(2n-1)及
(2n) 如下: ( 5 分)
令![]()
(1)=1,
(2)=3 .設(shè)已定義出不同的正整數(shù)值
(k) (1
k
2n)滿足整除條件且包含 1,2,…,n ,設(shè) v 是未取到的最小正整數(shù)值,由于 2n+1 與 2n+2 互素,根據(jù)孫子定理,存在不同于v及
(k) (1
k
2n)的正整數(shù)u滿足同余式組
u
-S2n(mod 2n+1)
-S2n-v (mod 2n+2) . ( 5 分)
定義
(2n+1)=u,
(2n+2)=v .則正整數(shù)
(k) ( 1
k
2n+2 )也互不相同,滿足整除條件,且包含
1,2,…,n+1 .根據(jù)數(shù)學(xué)歸納法原理,已經(jīng)得到符合要求的一一映射
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| n |
| i-1 |
| n |
| j-1 |
| a11 | a12 | … | a1n |
| a21 | a22 | … | a2n |
| … | … | … | … |
| an1 | an2 | … | ann |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com