中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
在數列中,.
(Ⅰ)求證:數列為等差數列;
(Ⅱ)設數列滿足,若
對一切恒成立,求實數的取值范圍
解:(1)由,變形得:
,所以………………4分
故數列是以為首項,為公差的等差數列………………………5分
(2)由(1)得,所以…………………………7分

=== 
所以是關于的單調遞增函數,則
故實數的取值范圍是
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
已知數列為等差數列,且
(1) 求數列的通項公式;
(2) 令,求證:數列是等比數列;
(3)令,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知等差數列{}的前n項和為 ,若,則=( )
A.144B.18C.54D.72

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)設{an}是等差數列,{bn}是各項都為正數的等比數列,且
a1=b1=1,a3+b5=21,a5+b3=13.
(Ⅰ)求{an},{bn}的通項公式;
(Ⅱ)求數列的前n項和.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知等差數列{an}的前n項的和記為Sn.如果a4=-12, a8=-4.
(1)求數列{an}的通項公式;
(2)求Sn的最小值及其相應的n的值;
(3)從數列{an}中依次取出a1a2a4a8,…,,…,構成一個新的數列{bn},求{bn}的前n項和.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)已知,點在曲線     (Ⅰ)求證:數列為等差數列,并求數列的通項公式;
(Ⅱ)設數列的前n項和為,若對于任意的,存在正整數t,使得恒成立,求最小正整數t的值

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知數列的前項和為,數列滿足:,前項和為,設。  (1)求數列的通項公式;
(2)是否存在自然數k, 當時,總有成立,若存在,求自然數的最小值。若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知數列滿足
(1)令,證明:是等比數列;
(2)求的通項公式

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

(本題滿分14分)已知,點在曲線     (Ⅰ)求證:數列為等差數列,并求數列的通項公式;
(Ⅱ)設數列的前n項和為,若對于任意的,存在正整數t,使得恒成立,求最小正整數t的值.

查看答案和解析>>

同步練習冊答案