已知棱長為a的正方體ABCD—A1B1C1D1,E為BC中點.
(1)求B到平面B1ED距離
(2)求直線DC和平面B1ED所成角的正弦值. (12分) ![]()
(1) d =
;(2)sinα=
。
解析試題分析:(1)求點到平面的距離,可利用體積法.可利用V B1-ECD=V C-B1DE.
(2)因為E為BC的中點,所以點C到平面B1ED的距離等于點B到平面B1ED的距離h,在(I)的基礎上可求出直線DC和平面B1ED所成角
.
(1)以A為原點,AB,AD,AA為x軸,y軸,z軸建立坐標系如圖.用向量法易求得B到平面B1ED距離d =![]()
![]()
(2)方法一:向量法略
方法二:解:在四面體B1—DCE中,V B1—ECD=V C—B1DE,
則S△B1DE·h C—B1DE=S△ECD·h B1—ECD
而S B1DE=
a2,S△ECD=
,則h C—B1DE=
.
則sinα=![]()
考點:點到平面的距離,直線與平面所成的角.
點評:利用四面體可換底的特性,求出點到平面的距離.求線面角如果直接找角不好找,可以象本題一樣轉化為點到平面的距離求解.
科目:高中數學 來源: 題型:解答題
如圖
,在四棱錐
中,![]()
平面
,底面
是菱形,點O是對角線
與
的交點,
是
的中點,
.![]()
(1) 求證:
平面
;
(2) 平面![]()
平面
;
(3) 當四棱錐
的體積等于
時,求
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
如圖,在直三棱柱
(側棱垂直于底面的棱柱)中,
,
,
,
,點
是
的中點. ![]()
(Ⅰ) 求證:
∥平面
;
(Ⅱ)求AC1與平面CC1B1B所成的角.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
如圖,四棱錐P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,點E在棱PA上,且PE=2EA。
(1)求直線PC與平面PAD所成角的余弦值;(6分)
(2)求證:PC//平面EBD;(4分)
(3)求二面角A—BE—D的余弦值.(4分)![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)如圖,在三棱錐
中,面
面
,
是正三角形,
,
.
(Ⅰ)求證:
;
(Ⅱ)求平面DAB與平面ABC的夾角的余弦值;
(Ⅲ)求異面直線
與
所成角的余弦值.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題共12分)如圖,四棱錐
的底面是直角梯形,
,
,
和
是兩個邊長為
的正三角形,
,
為
的中點,
為
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求直線
與平面
所成角的正弦值.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com