(滿(mǎn)分12分)已知:正方體
中,棱長(zhǎng)
,
、
分別為
、
的中點(diǎn),
、
是
、
的中點(diǎn),![]()
(1)求證:
//平面
;
(2)求:
到平面
的距離。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖,菱形ABCD與矩形BDEF所在平面互相垂直,
.![]()
(1)求證:FC∥平面AED;
(2)若
,當(dāng)二面角
為直二面角時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直三棱柱
中,
,
分別是棱
上的點(diǎn)(點(diǎn)
不同于點(diǎn)
),且
為
的中點(diǎn).![]()
求證:(1)平面
平面
;
(2)直線
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)如圖,四棱錐P--ABCD中,PB
底面ABCD.底面ABCD為直角梯形,AD∥BC,AB=AD=PB=3,BC=6.點(diǎn)E在棱PA上,且PE=2EA.![]()
(1)求異面直線PA與CD所成的角;
(2)求證:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖,在□ABCD中,∠DAB=60°,AB=2,AD="4." 將△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD. ![]()
(1)求證:AB⊥DE;
(2)求三棱錐E—ABD的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
如圖,在四面體PABC中,PA=PB,CA=CB,D、E、F、G分別是PA,AC、CB、BP的中點(diǎn).![]()
(1)求證:D、E、F、G四點(diǎn)共面;
(2)求證:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,
,求四面體PABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分15分)如圖,在四棱錐
中,底面
是正方形,側(cè)棱
底面
,
,
是
的中點(diǎn),作
交
于點(diǎn)![]()
![]()
(1)證明:
平面
.
(2)證明:
平面
.
(3)求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在長(zhǎng)方體
中
,
為
中點(diǎn).![]()
(1)求證:
;
(2)在棱
上是否存在一點(diǎn)
,使得
平面
若存在,求
的長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知棱長(zhǎng)為a的正方體ABCD—A1B1C1D1,E為BC中點(diǎn).
(1)求B到平面B1ED距離
(2)求直線DC和平面B1ED所成角的正弦值. (12分) ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com