如圖,已知四棱錐
中,底面
是直角梯形,
,
,
,
,
平面
,
. ![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)若
是
的中點(diǎn),求三棱錐
的體積.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).![]()
(1)求證:
∥平面
;
(2)求異面直線
與
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐
中,底面為直角梯形,
,
垂直于底面
,
分別為
的中點(diǎn).![]()
(1)求證:
;
(2)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
將邊長為
的正方形
和等腰直角三角形
按圖拼為新的幾何圖形,
中,
,連結(jié)
,若
,
為
中點(diǎn)![]()
(Ⅰ)求
與
所成角的大小;
(Ⅱ)若
為
中點(diǎn),證明:
平面
;
(Ⅲ)證明:平面
平面![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐
中,
平面
,
,
為側(cè)棱
上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖所示.![]()
(1)證明:
平面
;
(2)在
的平分線上確定一點(diǎn)
,使得
平面
,并求此時(shí)
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱
中,側(cè)面
,
均為正方形,∠
,點(diǎn)
是棱
的中點(diǎn).![]()
(Ⅰ)求證:
⊥平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長方體
,中,
,點(diǎn)
在棱AB上移動(dòng).![]()
(Ⅰ)證明:
;
(Ⅱ)求點(diǎn)
到平面
的距離;
(Ⅲ)
等于何值時(shí),二面角
的大小為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐
中,底面
為菱形,
,
為
的中點(diǎn).![]()
(1)若
,求證:平面
平面
;
(2)點(diǎn)
在線段
上,
,若平面
平面
,且
,求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在正方體ABCD﹣A1B1C1D1中,棱長AB=1.![]()
(Ⅰ)求異面直線A1B與 B1C所成角的大小;(Ⅱ)求證:平面A1BD∥平面B1CD1.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com