直四棱柱
的底面
是菱形,
,其側(cè)面展開(kāi)圖是邊長(zhǎng)為
的正方形.
、
分別是側(cè)棱
、
上的動(dòng)點(diǎn),
.![]()
(Ⅰ)證明:
;
(Ⅱ)
在棱
上,且
,若
∥平面
,求
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
( 12分)如圖,在四棱錐
中,側(cè)面
是正三角形,底面
是邊長(zhǎng)為2的正方形,側(cè)面
平面
為
的中點(diǎn).![]()
①求證:
平面
;
②求直線
與平面
所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)如圖,
、
分別是正三棱柱
的棱
、
的中點(diǎn),且棱
,
.![]()
(Ⅰ)求證:
平面
;
(Ⅱ)在棱
上是否存在一點(diǎn)
,使二面角
的大小為
,若存在,求
的長(zhǎng);若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ ACB=
,EF∥AB,F(xiàn)G∥BC,EG∥AC. AB="2EF." 若M是線段AD的中點(diǎn)。求證:GM∥平面ABFE
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
如圖(1)在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別是PC、PD、BC的中點(diǎn),現(xiàn)將△PDC沿CD折起,使平面PDC⊥平面ABCD(如圖2)
(1)求二面角G-EF-D的大小;
(2)在線段PB上確定一點(diǎn)Q,使PC⊥平面ADQ,并給出證明過(guò)程.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐
中,底面
是矩形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)(理)在長(zhǎng)方體ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,點(diǎn)E在棱
AD上移動(dòng).
(1)證明:D1E⊥A1D;
(2)當(dāng)E為AB的中點(diǎn)時(shí),求點(diǎn)E到面ACD1的距離;
(3)AE等于何值時(shí),二面角D1—EC—D的大小為
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,側(cè)棱垂直底面的三棱柱
的底面
位于平行四邊形
中,
,
,
,點(diǎn)
為
中點(diǎn).
(Ⅰ)求證:平面
平面
.
(Ⅱ)設(shè)二面角
的大小為
,直線
與平面
所成的角為
,求
的值.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com