( 12分)如圖,在四棱錐
中,側(cè)面
是正三角形,底面
是邊長為2的正方形,側(cè)面
平面
為
的中點(diǎn).![]()
①求證:
平面
;
②求直線
與平面
所成角的正切值.
(Ⅰ)證明:見解析;(Ⅱ)
,即求.
解析試題分析:(Ⅰ)證明AF⊥平面PCD,利用線面垂直的判定定理,只需證明AF⊥PD,CD⊥AF即可;
(Ⅱ)證明∠PBF為直線PB與平面ABF所成的角,求出PF,BF的長,即可得出結(jié)論.
(Ⅰ)證明:如圖,由
是正三角形,
為
中點(diǎn),所以
,又因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/8a/3/19r4b2.png" style="vertical-align:middle;" />平面
,![]()
且
面
面
;
又底面
為正方形,即![]()
所以
平面
,而
平面
,
所以
,且
,
所以
平面
.………………6分;
(Ⅱ)由(Ⅰ)證明可知,
平面
,
所以
平面![]()
所以
,又由(Ⅰ)知
,且
,
所以
平面
,
即
為直線
與平面
所成的角…………………9分
且
,易知
,
中,
,
所以
,即求.………………12分
考點(diǎn):本題考查線面垂直,考查線面角,屬于中檔題.
點(diǎn)評:解題的關(guān)鍵是正確運(yùn)用線面垂直的判定,作出線面角.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
圖形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點(diǎn).AC,BD交于O點(diǎn).![]()
(1)二面角Q-BD-C的大小:
(2)求二面角B-QD-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
圖形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點(diǎn).AC,BD交于O點(diǎn).
(1)二面角Q-BD-C的大小:
(2求二面角B-QD-C的大小.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.![]()
(Ⅰ)求證:AD⊥平面SBC;
(Ⅱ)試在SB上找一點(diǎn)E,使得平面ABS⊥平面ADE,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,棱長為a的正方體ABCD-A1B1C1D1中,E、F、G分別為A1D1、A1B1、BC的中點(diǎn),![]()
(1)求證:GC1//面AEF
(2)求:直線GC1到面AEF的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐V-ABCD中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD.![]()
(Ⅰ)證明AB⊥平面VAD;
(Ⅱ)求面VAD與面VDB所成二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖所示,正方形
和矩形
所在平面相互垂直,
是
的中點(diǎn).
(1)求證:
;
(2)若直線
與平面
成45o角,求異面直線
與
所成角的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD
,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE
,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,
使平面AEFD⊥平面EBCF (如圖).
(1)當(dāng)
時,求證:BD⊥EG ;
(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為
,求
的最大值;
(3)當(dāng)
取得最大值時,求二面角D-BF-C的余弦值.![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直四棱柱
的底面
是菱形,
,其側(cè)面展開圖是邊長為
的正方形.
、
分別是側(cè)棱
、
上的動點(diǎn),
.![]()
(Ⅰ)證明:
;
(Ⅱ)
在棱
上,且
,若
∥平面
,求
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com