已知函數(shù)
(
).
(1)若
的定義域和值域均是
,求實(shí)數(shù)
的值;
(2)若對(duì)任意的
,![]()
,總有
,求實(shí)數(shù)
的取值范圍.
;![]()
解析試題分析:(1)由二次函數(shù)性質(zhì),結(jié)合定義域、值域,列出等式求解.通常要配方化為二次函數(shù)的頂點(diǎn)式,根據(jù)定義域及對(duì)稱軸確定單調(diào)區(qū)間;(2)根據(jù)單調(diào)性求出最大值和最小值,再解不等式.
試題解析:(1)∵
(
),∴
在
上是減函數(shù),又定義域和值域均為
,∴
, 即
, 解得
.(5分)
(2)若
,又
,且,![]()
∴
,
.
∵對(duì)任意的
,![]()
,總有
,
∴
, 即
,解得
,
又
, ∴
.若![]()
![]()
,
顯然成立, 綜上
. (12分)
考點(diǎn):函數(shù)得定義域、值域、單調(diào)性、最大值與最小值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
是定義在R上的奇函數(shù),對(duì)任意實(shí)數(shù)
有
成立.
(1)證明
是周期函數(shù),并指出其周期;
(2)若
,求
的值;
(3)若
,且
是偶函數(shù),求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
是同時(shí)符合以下性質(zhì)的函數(shù)
組成的集合:
①
,都有
;②
在
上是減函數(shù).
(1)判斷函數(shù)
和
(
)是否屬于集合
,并簡要說明理由;
(2)把(1)中你認(rèn)為是集合
中的一個(gè)函數(shù)記為
,若不等式
對(duì)任意的
總成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在
上的函數(shù)
同時(shí)滿足以下條件:①函數(shù)
在
上是減函數(shù),在
上是增函數(shù);②
是偶函數(shù);③函數(shù)
在
處的切線與直線
垂直.
(Ⅰ)求函數(shù)
的解析式;
(Ⅱ)設(shè)
,若存在
使得
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)當(dāng)
時(shí),求
在
上的最小值;
(2)若函數(shù)
在
上為增函數(shù),求正實(shí)數(shù)
的取值范圍;
(3)若關(guān)于
的方程
在區(qū)間
內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
的圖像在
處取得極值4.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)對(duì)于函數(shù)
,若存在兩個(gè)不等正數(shù)![]()
,當(dāng)
時(shí),函數(shù)
的值域是
,則把區(qū)間
叫函數(shù)
的“正保值區(qū)間”.問函數(shù)
是否存在“正保值區(qū)間”,若存在,求出所有的“正保值區(qū)間”;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
在
處取得極值
.
(I)求實(shí) 數(shù)a和b. (Ⅱ)求f(x)的單調(diào)區(qū)間
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com