某產(chǎn)品具有一定的時(shí)效性,在這個(gè)時(shí)效期內(nèi),由市場(chǎng)調(diào)查可知,在不做廣告宣傳且每件獲利
元的前提下,可賣出
件;若做廣告宣傳,廣告費(fèi)為
千元比廣告費(fèi)為
千元時(shí)多賣出
件.
(Ⅰ)試寫(xiě)出銷售量
與
的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)
時(shí),廠家應(yīng)生產(chǎn)多少件這種產(chǎn)品,做幾千元的廣告,才能獲利最大?
(Ⅰ)
;(Ⅱ)7875,5.
解析試題分析:(Ⅰ)由條件得到
,然后用累加法得到
;(Ⅱ)將
代入,設(shè)獲利為
元,從而得到
.然后根據(jù)不等式
,即做5千元的廣告,再由
知廠家應(yīng)生產(chǎn)7875件這種產(chǎn)品.
試題解析:(Ⅰ)設(shè)
表示廣告費(fèi)為
元時(shí)的銷售量,
由題意知
,
, ,
,
,
將上述各式相加得:
為所求.
(Ⅱ)當(dāng)
時(shí),設(shè)獲利為
元,
由題意知
;
欲使
最大,則
,此時(shí)
.
即廠家應(yīng)生產(chǎn)7875件這種產(chǎn)品,做5千元的廣告,才能獲利最大.
考點(diǎn):1.累加法求數(shù)列通項(xiàng);2.數(shù)列的最大項(xiàng)求法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知實(shí)數(shù)
,且
按某種順序排列成等差數(shù)列.
(1)求實(shí)數(shù)
的值;
(2)若等差數(shù)列
的首項(xiàng)和公差都為
,等比數(shù)列
的首項(xiàng)和公比都為
,數(shù)列
和
的前
項(xiàng)和分別為
,且
,求滿足條件的自然數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知an=n×0.8n(n∈N*).
(1)判斷數(shù)列{an}的單調(diào)性;
(2)是否存在最小正整數(shù)k,使得數(shù)列{an}中的任意一項(xiàng)均小于k?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
觀察下列三角形數(shù)表,假設(shè)第n行的第二個(gè)數(shù)為an(n≥2,n∈N*).![]()
(1)依次寫(xiě)出第六行的所有6個(gè)數(shù);
(2)歸納出an+1與an的關(guān)系式并求出{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列{an}(n∈N﹡)中,a1=0,當(dāng)3an<n2時(shí),an+1=n2,當(dāng)3an>n2時(shí),an+1=3an.求a2,a3,a4,a5,猜測(cè)數(shù)列的通項(xiàng)an并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
的通項(xiàng)
,
.
(Ⅰ)求
;
(Ⅱ)判斷數(shù)列
的增減性,并說(shuō)明理由;
(Ⅲ)設(shè)
,求數(shù)列
的最大項(xiàng)和最小項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線
,過(guò)
上一點(diǎn)
作一斜率為
的直線交曲線
于另一點(diǎn)
(
且
,點(diǎn)列
的橫坐標(biāo)構(gòu)成數(shù)列
,其中
.
(1)求
與
的關(guān)系式;
(2)令
,求證:數(shù)列
是等比數(shù)列;
(3)若
(
為非零整數(shù),
),試確定
的值,使得對(duì)任意
,都有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)等差數(shù)列
的前
項(xiàng)和為
,滿足:![]()
.遞增的等比數(shù)列
前
項(xiàng)和為
,滿足:
.
(Ⅰ)求數(shù)列
,
的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列
對(duì)
,均有
成立,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
的各項(xiàng)均為正數(shù),
為其前
項(xiàng)和,對(duì)于任意的
,滿足關(guān)系式![]()
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)數(shù)列
的通項(xiàng)公式是
,前
項(xiàng)和為
,求證:對(duì)于任意的正整數(shù)
,總有
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com