中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
若函數f(x)=loga(
x
2
 
-ax+
1
2
)
有最小值,則實數a的取值范圍是(  )
分析:首先確定a>1,再利用要使函數f(x)=loga(
x
2
 
-ax+
1
2
)
有最小值,則t=x2-ax+
1
2
有最小值,且為正數,即可得到結論.
解答:解:由題意,令t=x2-ax+
1
2
=(t-
a
2
2+
2-a2
4
,則函數f(t)=logat
∵函數f(x)=loga(
x
2
 
-ax+
1
2
)
有最小值,
∴a>1
要使函數f(x)=loga(
x
2
 
-ax+
1
2
)
有最小值,則t=x2-ax+
1
2
有最小值,且為正數
2-a2
4
>0
-
2
<a<
2

綜上,實數a的取值范圍是(1,
2

故選A.
點評:本題考查復合函數的最值,考查解不等式,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源:陜西省漢中地區2007-2008學年度高三數學第一學期期中考試試卷(理科) 題型:022

若函數f(x)=的定義域為M,g(x)=lo(2+x=6x2)的單調遞減區間是開區間N,設全集U=R,則M∩CU(N)=________.

查看答案和解析>>

科目:高中數學 來源:汨羅市第三中學2008屆高三第二次月考2、數學 題型:044

函數f(x)=lo(x2-2ax+3).

(1)若f(x)的定義域為R,值域為(-∞,-1],試求實數a的值;

(2)若f(x)在(-∞,1]內是增函數,試求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:蘇教版江蘇省揚州市2007-2008學年度五校聯考高三數學試題 題型:044

已知函數(m∈R)

(1)若y=lo[8-f(x)]在[1,+∞)上是單調減函數,求實數m的取值范圍;

(2)設g(x)=f(x)+lnx,當m≥-2時,求g(x)在上的最大值.

查看答案和解析>>

科目:高中數學 來源:山東省莒南一中2008-2009學年度高三第一學期學業水平階段性測評數學文 題型:044

設f(x)=lo的奇函數,a為常數,

(Ⅰ)求a的值;

(Ⅱ)證明:f(x)在(1,+∞)內單調遞增;

(Ⅲ)若對于[3,4]上的每一個x的值,不等式f(x)>()x+m恒成立,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案