已知拋物線

的焦點(diǎn)
F恰好是橢圓

的右焦點(diǎn),且兩條曲線交點(diǎn)的連線過點(diǎn)
F,則該橢圓的離心率為____________.
由條件得:

設(shè)兩條曲線交點(diǎn)為

根據(jù)橢圓和拋物線對稱性知

,不妨點(diǎn)A在第一象限,由A在拋物線上得

,A在橢圓上得


.則由條件得:


.解得

(舍去)
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若橢圓的兩焦點(diǎn)是

,

,且該橢圓過點(diǎn)

,則該橢圓的標(biāo)準(zhǔn)方程是_______________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖所示, 底面直徑為

的圓柱被與底面成

的平面所截,其截口是一個橢圓,則這個橢圓的離心率為
.

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知拋物線

的焦點(diǎn)為
F,橢圓
C:

的離心率為

,

是它們的一個交點(diǎn),且

.
(Ⅰ)求橢圓
C的方程;
(Ⅱ)已知

,點(diǎn)A,B為橢圓

上的兩點(diǎn),且弦AB不平行于對稱軸,

是

的中點(diǎn),試探究

是否為定值,若不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,
O為原點(diǎn),從橢圓

的左焦點(diǎn)
F引圓

的切線
FT交橢圓于點(diǎn)
P,切點(diǎn)
T位于
F、P之間,
M為線段
FP的中點(diǎn),
M位于
F、T之間,則

的值為_____________

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在直角坐標(biāo)系

中有一直角梯形

,

的中點(diǎn)為

,

,

,

,

,

,以

為焦點(diǎn)的橢圓經(jīng)過點(diǎn)

.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)

,問是否存在直線

與橢圓交于

兩點(diǎn)且

,若存在,求出直線

的斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知橢圓

的方程為:

,其焦點(diǎn)在

軸上,離心率

.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動點(diǎn)

滿足

,其中M,N是橢圓

上的點(diǎn),直線OM與ON的斜率之積為

,求證:

為定值.
(3)在(2)的條件下,問:是否存在兩個定點(diǎn)

,使得

為定值?若存在,給出證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
G:

+
y2=1.過點(diǎn)(
m,0)作圓
x2+
y2=1的切線
l交橢圓
G于
A,
B兩點(diǎn).
(1)求橢圓
G的焦點(diǎn)坐標(biāo)和離心率;
(2)將|
AB|表示為
m的函數(shù),并求|
AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓中心為坐標(biāo)原點(diǎn),焦點(diǎn)位于x軸上,

分別為右頂點(diǎn)和上頂點(diǎn),

是左焦點(diǎn);當(dāng)

時,此類橢圓稱為“黃金橢圓”,其離心率為

.類比“黃金橢圓”可推算出“黃金雙曲線”的離心率為
.
查看答案和解析>>