設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若
,則
等于
A.1 B.-1 C.2 D![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(文)對(duì)于數(shù)列
,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為
,公差為
的無(wú)窮等差數(shù)列
的子數(shù)列問(wèn)題,為此,他取了其中第一項(xiàng)
,第三項(xiàng)
和第五項(xiàng)
.
(1) 若
成等比數(shù)列,求
的值;
(2) 在
,
的無(wú)窮等差數(shù)列
中,是否存在無(wú)窮子數(shù)列
,使得數(shù)列
為等比數(shù)列?若存在,請(qǐng)給出數(shù)列
的通項(xiàng)公式并證明;若不存在,說(shuō)明理由;
(3) 他在研究過(guò)程中猜想了一個(gè)命題:“對(duì)于首項(xiàng)為正整數(shù)
,公比為正整數(shù)
(
)的無(wú)窮等比數(shù) 列
,總可以找到一個(gè)子數(shù)列
,使得
構(gòu)成等差數(shù)列”. 于是,他在數(shù)列
中任取三項(xiàng)
,由
與
的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)
,
是等差數(shù)列
,
的前n項(xiàng)和,若
,則使得
為整數(shù)的正整數(shù)n的個(gè)數(shù)是( ).
| A.2 | B.3 | C.4 | D.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
己知等差數(shù)列
的首項(xiàng)為
,公差為
,其前
項(xiàng)和為
,若直線
與圓
的兩個(gè)交點(diǎn)關(guān)于直線
對(duì)稱,則
( )
| A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
為等差數(shù)列,
為前
項(xiàng)和,
,則下列錯(cuò)誤的是( ).
| A. | B. |
| C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
在等差數(shù)列
中,![]()
,則此數(shù)列前30項(xiàng)和等于( )
| A.810 | B.840 | C.870 | D.900 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
對(duì)于數(shù)列
,![]()
),若
為
,
,….,
中最大值(
,則稱數(shù)列
為數(shù)列
的“凸值數(shù)列”。如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7;由此定義,下列說(shuō)法正確的有______
①遞減數(shù)列
的“凸值數(shù)列”是常數(shù)列;②不存在數(shù)列
,它的“凸值數(shù)列”還是
本身;
③任意數(shù)列
的“凸值數(shù)列”遞增數(shù)列;④“凸值數(shù)列”為1,3,3,9,的所有數(shù)列
的個(gè)數(shù)為3.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com