中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知正實數a,b滿足2a+b=1,則4a2+b2+
1
ab
的最小值為
17
2
17
2
分析:由題意,4a2+b2+
1
ab
=(2a+b)2+
1
ab
-4ab
=1+
1
ab
-4ab,令ab=t,則4a2+b2+
1
ab
=1+
1
t
-4t,確定t的范圍及y=
1
t
-4t單調遞減,即可得出結論.
解答:解:4a2+b2+
1
ab
=(2a+b)2+
1
ab
-4ab
=1+
1
ab
-4ab,
令ab=t,則4a2+b2+
1
ab
=1+
1
t
-4t.
∵正實數a,b滿足2a+b=1,
∴1≥2
2ab

∴0<ab
1
8

∴0<t
1
8

由y=
1
t
-4t可得y′=-
1
t2
-4<0,∴0<t
1
8
時,y=
1
t
-4t單調遞減,
∴y≥
15
2

∴4a2+b2+
1
ab
17
2

故答案為:
17
2
點評:本題考查最值問題,考查基本不等式的運用,考查函數的單調性,考查學生分析轉化問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知正實數a、b滿足a+b=1,則
ab
4a+9b
的最大值為(  )
A、
1
23
B、
1
24
C、
1
25
D、
1
26

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•三明模擬)已知正實數a,b滿足不等式ab+1<a+b,則函數f(x)=loga(x+b)的圖象可能為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•嘉興二模)已知正實數a,b滿足a+2b=1,則a2+4b2+
1
ab
的最小值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•河西區二模)已知正實數a,b滿足
2
a
+
1
b
=1
,則a+2b的最小值為
8
8

查看答案和解析>>

同步練習冊答案