中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
雙曲線x2-y2=2012的左、右頂點分別為A1、A2,P為其右支上一點,且∠A1PA2=4∠PA1A2,則∠PA1A2等于(  )
分析:設P(x,y),y>0,過點P作x軸的垂線PH,垂足為H,則可得tan∠PA 1H•tan∠PA2H=
y2
x2-a2
=1
,利用∠A1PA2=4∠PA1A2,即可求∠PA1A2的值.
解答:解:設P(x,y),y>0,過點P作x軸的垂線PH,垂足為H,
tan∠PA 1H=
y
x+a
tan∠PA 2H=
y
x-a
( 其中a2=2012)
tan∠PA 1H•tan∠PA2H=
y2
x2-a2
=1

∠PA 1H+∠PA2H=
π
2

設∠PA1A2=α,則∠PA2H=5α,∴α+5α=
π
2
,∴α=
π
12

∠PA 1A2=
π
12
,故選D.
點評:本題考查雙曲線的標準方程,考查正切函數的定義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知雙曲線x2-y2=2的左、右焦點分別為F1,F2,過點F2的動直線與雙曲線相交于A,B兩點.
(Ⅰ)若動點M滿足
F1M
=
F1A
+
F1B
+
F1O
(其中O為坐標原點),求點M的軌跡方程;
(Ⅱ)在x軸上是否存在定點C,使
CA
CB
為常數?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線x2-y2=2的左、右焦點分別為F1,F2,過點F2的動直線與雙曲線相交于A,B兩點.若動點M滿足
F1M
=
F1A
+
F1B
+
F1O
(其中O為坐標原點),求點M的軌跡方程;

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•崇明縣二模)若拋物線y2=2px(p>0)的焦點與雙曲線x2-y2=2的右焦點重合,則p的值為
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

過雙曲線x2-y2=2的右焦點F作傾斜角為300的直線,交雙曲線于P,Q兩點,則|PQ|的值為
4
2
4
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A(4,3),且P是雙曲線x2-y2=2上一點,F2為雙曲線的右焦點,則|PA|+|PF2|的最小值是
 

查看答案和解析>>

同步練習冊答案