若sin(
-α)=-
,sin(
+β)=
,其中
<α<
,
<β<
,求 角(α+β)的值.
α+β=
。
解析試題分析:先由
<α<
,
<β<
可知-
<
-α<0,
<
+β<
,
從而可由sin(
-α),sin(
+β)求出cos(
-α),cos(
+β),
然后再利用cos(α+β)=cos[(
+β)-(
-α)]=cos(
+β)·cos(
-α)+sin(
+β)·sin(
-α)代入求值,再根據(jù)
<α+β<π,從而確定α+β的值.
∵
<α<
,-
<
-α<0,
<β<
,
<
+β<
(3分)
由已知可得cos(
-α)=
,cos(
+β)=-![]()
則cos(α+β)=cos[(
+β)-(
-α)]=cos(
+β)·cos(
-α)+sin(
+β)·sin(
-α)=-
×
+
×(-
)=-
,…………(9分)
∵
<α+β<π ∴α+β=
…………(12分).
考點(diǎn):給值求角,兩角差的余弦公式.
點(diǎn)評:解本小題首先要利用同角的三角函數(shù)的平方關(guān)系求出余角的值,一定要把角的范圍搞清楚,然后再注意利用α+β=(
+β)-(
-α)把未知角用已知角表示出來,借助兩角差的余弦公式求解即可.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)
,其中
.
(1)若
,求函數(shù)f(x)的最小正周期;
(2)若
滿足
,且
,求函數(shù)f(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
,
.
(1)求函數(shù)
的最小正周期和單調(diào)遞增區(qū)間;
(2)求函數(shù)
在區(qū)間
上的最小值和最大值,并求出取得最值時
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共12分)已知向量
,
,函數(shù)
.
(Ⅰ)求函數(shù)
的最小正周期和最大值;
(Ⅱ)求函數(shù)
在區(qū)間
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)設(shè)函數(shù)![]()
的圖象經(jīng)過點(diǎn)
.
(1)求
的解析式,并求函數(shù)的最小正周期.
(2)若
且
,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分,每小題6分)
(1)若
為基底向量,且
若A、B、D三點(diǎn)共線,求實(shí)數(shù)k的值;
(2)用“五點(diǎn)作圖法”在已給坐標(biāo)系中畫出函數(shù)
一個周期內(nèi)的簡圖,并指出該函數(shù)圖象是由函數(shù)
的圖象進(jìn)行怎樣的變換而得到的?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com