中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知
(1)若時,求函數在點處的切線方程;
(2)若函數上是減函數,求實數的取值范圍;
(3)令是否存在實數,當是自然對數的底)時,函數的最小值是3,
若存在,求出的值;若不存在,說明理由.

(1);(2);(3)存在,.

解析試題分析:(1)時,利用求導法則得到的導函數,計算知,即切線斜率為1,再得到,從而通過直線的點斜式方程得到所求切線方程;(2)函數上是減函數,即導函數上是恒小于或等于0.,在上分母恒為正,所以分子,令,則為開口向上的二次函數.所以本題轉化為二次函數在閉區間的最值問題.,故兩個可能的最大值,得實數的取值范圍;(3)對求導,討論的范圍,研究導數的正負從而確定上的單調性,得到其最小值,由條件最小值是3得到的值,注意此時還要判斷是否在所討論的范圍內,若不在則要予以舍去.
試題解析:(1)當時,        1分
    函數在點處的切線方程為    3分
(2)函數上是減函數
上恒成立                     4分
,有                            6分
                                                            7分
(3)假設存在實數,使上的最小值是3
                                              8分
時,上單調遞減,
(舍去)                                                    10分
時,即,上恒成立,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,
⑴求證函數上的單調遞增;
⑵函數有三個零點,求的值;
⑶對恒成立,求a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,曲線在點處的切線是 
(Ⅰ)求,的值;
(Ⅱ)若上單調遞增,求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,設曲線在與軸交點處的切線為,的導函數,滿足
(1)求;
(2)設,,求函數上的最大值;
(3)設,若對于一切,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若對任意,使得恒成立,求實數的取值范圍;
(Ⅱ)證明:對,不等式成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知a>0,函數.
(1)若,求函數的極值,
(2)是否存在實數,使得成立?若存在,求出實數的取值集合;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數是定義在上的奇函數,當時, (其中e是自然界對數的底,)
(Ⅰ)設,求證:當時,;
(Ⅱ)是否存在實數a,使得當時,的最小值是3 ?如果存在,求出實數a的值;如果不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數。
(Ⅰ)若是增函數,求b的取值范圍;
(Ⅱ)若時取得極值,且時,恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設m為實數,函數f(x)=-+2x+m,x∈R
(Ⅰ)求f(x)的單調區間與極值;
(Ⅱ)求證:當m≤1且x>0時,>2+2mx+1.

查看答案和解析>>