如圖,在
中,
,
,
點(diǎn)
是
的中點(diǎn), 求![]()
(1)邊
的長;
(2)
的值和中線
的長
(1)2 (2)![]()
解析試題分析:
(1)利用角C的余弦值通過正余弦之間的關(guān)系可以求的C角的正弦值,已知角B的大小可以計(jì)算角B的正弦值,在三角形ABC中,已知角c,角B的正弦值與b邊的大小,則可以根據(jù)三角形ABC的正弦定理即可求的AB長.
(2)從(1)和已知可以求的B,C兩個(gè)角的正余弦值,由于三角形內(nèi)角和180度,故A角的余弦值可以通過誘導(dǎo)公式和余弦的和差角公式轉(zhuǎn)化為B,C兩角正余弦值來表示,從而得到A角的余弦值,在三角形ADC中利用A角的余弦定理即可求的CD的長度.
試題解析:
(1)由
可知,
是銳角,
所以,
.2分
由正弦定理
5分
(2) ![]()
8分
由余弦定理:
12分
考點(diǎn):正余弦和差角公式 三角形正余弦定理
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a,b,c分別為△ABC的三個(gè)內(nèi)角A,B,C的對邊,向量
,且向量
.
(1)求角A的大小;
(2)若
的面積為
,求b,c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,角A,B,C的對邊分別為a,b,c,且cos(A-B)cosB-sin(A-B)sin(A+C)
=-
.
(1)求sinA的值;
(2)若a=4
,b=5,求向量
在
方向上的投影.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a、b、c分別為△ABC三個(gè)內(nèi)角A、B、C的對邊,acosC+
asinC-b-c=0.
(1)求A;
(2)若a=2,△ABC的面積為
,求b、c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在銳角△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,且2asinB=
b.
(1)求角A的大;
(2)若a=6,b+c=8,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且f(A)=2cos
sin
+sin2
-cos2
.
(1)求函數(shù)f(A)的最大值;
(2)若f(A)=0,C=
,a=
,求b的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com