揚(yáng)州某地區(qū)要建造一條防洪堤,其橫斷面為等腰梯形,腰與底邊成角為
(如圖),考慮到防洪堤堅固性及石塊用料等因素,設(shè)計其橫斷面要求面積為
平方米,且高度不低于
米.記防洪堤橫斷面的腰長為
(米),外周長(梯形的上底線段
與兩腰長的和)為
(米).![]()
⑴求
關(guān)于
的函數(shù)關(guān)系式,并指出其定義域;
⑵要使防洪堤橫斷面的外周長不超過
米,則其腰長
應(yīng)在什么范圍內(nèi)?
⑶當(dāng)防洪堤的腰長
為多少米時,堤的上面與兩側(cè)面的水泥用料最省(即斷面的外周長最小)?求此時外周長的值.
(1)
;(2)
;(3)外周長的最小值為
米,此時腰長為
米.
解析試題分析:(1)將梯形高、上底和下底用
或
表示,根據(jù)梯形面積的計算得到
和
的等式,從而解出
,使問題得以解答,但不要忘記根據(jù)題目條件確定函數(shù)的定義域;(2)由(1)可得
,解這個不等式的同時不要忽略了函數(shù)的定義域就可得到結(jié)果;(3)即求(1)中函數(shù)的最小值,可以用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性后再求解,也可利用基本不等式求最小值.
試題解析:⑴
,其中
,
,
∴
,得
, 由
,得![]()
∴
; 6分
⑵
得
∵
∴腰長
的范圍是
10分
⑶
,當(dāng)并且僅當(dāng)
,即
時等號成立.
∴外周長的最小值為
米,此時腰長為
米。 16分
考點(diǎn):函數(shù)的應(yīng)用、基本不等式、函數(shù)的最值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
是定義在
上的偶函數(shù),當(dāng)
時,
。
(1)求
的函數(shù)解析式,并用分段函數(shù)的形式給出;
(2)作出函數(shù)
的簡圖;
(3)寫出函數(shù)
的單調(diào)區(qū)間及最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
).
(1)求
的單調(diào)區(qū)間;
(2)如果
是曲線
上的任意一點(diǎn),若以
為切點(diǎn)的切線的斜率
恒成立,求實(shí)數(shù)
的最小值;
(3)討論關(guān)于
的方程
的實(shí)根情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某建筑公司要在一塊寬大的矩形地面(如圖所示)上進(jìn)行開發(fā)建設(shè),陰影部分為一公共設(shè)施建設(shè)不能開發(fā),且要求用欄柵隔開(欄柵要求在一直線上),公共設(shè)施邊界為曲線
的一部分,欄柵與矩形區(qū)域的邊界交于點(diǎn)
,交曲線于點(diǎn)
,設(shè)
.![]()
(1)將△
(
為坐標(biāo)原點(diǎn))的面積
表示成
的函數(shù)
;
(2)若在
處,
取得最小值,求此時
的值及
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)當(dāng)
時,畫出函數(shù)
的簡圖,并指出
的單調(diào)遞減區(qū)間;
(2)若函數(shù)
有4個零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
:
(1)若函數(shù)在區(qū)間
上存在零點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)問:是否存在常數(shù)
,當(dāng)
時,
的值域?yàn)閰^(qū)間
,且
的長度為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中![]()
(1)寫出
的奇偶性與單調(diào)性(不要求證明);
(2)若函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e4/7/gzlkc1.png" style="vertical-align:middle;" />,求滿足不等式
的實(shí)數(shù)
的取值集合;
(3)當(dāng)
時,
的值恒為負(fù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
是同時符合以下性質(zhì)的函數(shù)
組成的集合:
①
,都有
;②
在
上是減函數(shù).
(1)判斷函數(shù)
和
(
)是否屬于集合
,并簡要說明理由;
(2)把(1)中你認(rèn)為是集合
中的一個函數(shù)記為
,若不等式
對任意的
總成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
.
(I)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時,函數(shù)
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)設(shè)正實(shí)數(shù)
滿足
,求證:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com