如圖所示,離心率為
的橢圓
上的點(diǎn)到其左焦點(diǎn)的距離的最大值為3,過(guò)橢圓
內(nèi)一點(diǎn)
的兩條直線分別與橢圓交于點(diǎn)
、
和
、
,且滿足
,其中
為常數(shù),過(guò)點(diǎn)
作
的平行線交橢圓于
、
兩點(diǎn).![]()
(1)求橢圓
的方程;
(2)若點(diǎn)
,求直線
的方程,并證明點(diǎn)
平分線段
.
(1)
;(2)詳見(jiàn)解析.
解析試題分析:(1)由題得
,
,聯(lián)立
解這個(gè)方程組即得.(2)首先求出直線MN的方程.由于MN過(guò)點(diǎn)P(1,1),故只要求出MN的斜率即可.又由于MN平行AB,故先求出直線AB的斜率.設(shè)
,則
.由
可得點(diǎn)C的坐標(biāo),由
可得點(diǎn)D的坐標(biāo),將A、B、C、D的坐標(biāo)代入橢圓方程得四個(gè)等式,利用這四個(gè)等式可整體求出
,然后求出直線MN的方程,與橢圓方程聯(lián)立可求得MN的中點(diǎn)坐標(biāo)即為點(diǎn)P的坐標(biāo),從而問(wèn)題得證 .
(1)由題得
,
,聯(lián)立
解得
,
,
,
∴橢圓方程為
4分
(2)方法一:設(shè)
,由
可得
.
∵點(diǎn)
在橢圓上,故![]()
整理得:
6分
又點(diǎn)
在橢圓上可知
,
故有
①
由
,同理可得:
②
②-①得:
,即
9分
又
∥
,故![]()
∴直線
的方程為:
,即
.
由
可得:![]()
∴
是
的中點(diǎn),即點(diǎn)
平分線段
12分
(2)方法二:∵
,
,∴
,即![]()
![]()
在梯形
中,設(shè)
中點(diǎn)為
,
中點(diǎn)為
,
過(guò)
作
的平行線交
于點(diǎn)![]()
∵
與
面積相等,∴![]()
∴
,
,
三點(diǎn)共線 6分
設(shè)
,![]()
∴
,
,
兩式相減得
,![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
分別是橢圓
的 左,右焦點(diǎn)。
(1)若P是該橢圓上一個(gè)動(dòng)點(diǎn),求
的 最大值和最小值。
(2)設(shè)過(guò)定點(diǎn)M(0,2)的 直線l與橢圓交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l斜率k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xoy中,已知橢圓C1:
的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(0,1)在C1上。
(1)求橢圓C1的方程;
(2)設(shè)直線l同時(shí)與橢圓C1和拋物線C2:
相切,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓
的離心率為
,
軸被曲線
截得的線段長(zhǎng)等于
的長(zhǎng)半軸長(zhǎng)。![]()
(1)求
,
的方程;
(2)設(shè)
與
軸的交點(diǎn)為M,過(guò)坐標(biāo)原點(diǎn)O的直線
與
相交于點(diǎn)A,B,直線MA,MB分別與
相交與D,E.
①證明:
;
②記△MAB,△MDE的面積分別是
.問(wèn):是否存在直線
,使得
=
?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
給定橢圓
.稱圓心在原點(diǎn)O,半徑為
的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為
,其短軸上的一個(gè)端點(diǎn)到F的距離為
.
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)P作直線
,使得
與橢圓C都只有一個(gè)交點(diǎn),試判斷
是否垂直?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)A(3,2), 點(diǎn)P是拋物線y2=4x上的一個(gè)動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),求
的最小值及此時(shí)P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的中心在坐標(biāo)原點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在
軸上,有一個(gè)頂點(diǎn)為
,
.
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)
作直線
與橢圓
交于
兩點(diǎn),線段
的中點(diǎn)為
,求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的離心率為
,以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓與直線
相切.
(1)求橢圓
的方程;
(2)設(shè)
,過(guò)點(diǎn)
作直線
(不與
軸重合)交橢圓于
、
兩點(diǎn),連結(jié)
、
分別交直線
于
、
兩點(diǎn),試探究直線
、
的斜率之積是否為定值,若為定值,請(qǐng)求出;若不為定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線C:![]()
,點(diǎn)A、B在拋物線C上.![]()
(1)若直線AB過(guò)點(diǎn)M(2p,0),且
=4p,求過(guò)A,B,O(O為坐標(biāo)原點(diǎn))三點(diǎn)的圓的方程;
(2)設(shè)直線OA、OB的傾斜角分別為
,且
,問(wèn)直線AB是否會(huì)過(guò)某一定點(diǎn)?若是,求出這一定點(diǎn)的坐標(biāo),若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com