中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數
(1)求的單調區間;
(2)當時,判斷的大小,并說明理由;
(3)求證:當時,關于的方程:在區間上總有兩個不同的解.

(1)的單調遞增區間為,單調遞減區間為
(2)當時,
(3)構造函數,然后借助于在區間分別存在零點,又由二次函數的單調性可知最多在兩個零點,進而得到結論。

解析試題分析:(1)
時可解得,或
時可解得
所以函數的單調遞增區間為
單調遞減區間為                         3分
(2)當時,因為單調遞增,所以
時,因為單減,在單增,所能取得的最小值為,所以當時,
綜上可知:當時,.                   7分
(3)
考慮函數


所以在區間分別存在零點,又由二次函數的單調性可知:最多存在兩個零點,所以關于的方程:在區間上總有兩個不同的解                                  10分
考點:導數的運用
點評:考查了導數在研究函數中的運用,以及利用函數與方程的思想的綜合運用,屬于難度題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數在點處取得極小值-4,使其導數的取值范圍為,求:
(1)的解析式;
(2),求的最大值;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求的單調遞減區間;
(2)若在區間上的最大值為20,求它在該區間的最小值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,直線與函數的圖象都相切,且與函數的圖象的切點的橫坐標為.
(Ⅰ)求直線的方程及的值;
(Ⅱ)若(其中的導函數),求函數的最大值;
(Ⅲ)當時,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的圖象經過點M(1,4),曲線在點M處的切線恰好與直線垂直。
(1)求實數的值;
(2)若函數在區間上單調遞增,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的極值點與極值;
(2)設的導函數,若對于任意,且恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,().
(1)求函數的極值;
(2)已知,函數,判斷并證明的單調性;
(3)設,試比較,并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設曲線在點處的切線斜率為,且,對一切實數,不等式恒成立
(1) 求的值;
(2) 求函數的表達式;
(3) 求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求的最小值;
(2)若對所有都有,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案