中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數圖像上點處的切線與直線平行(其中),     
(I)求函數的解析式;
(II)求函數上的最小值;
(III)對一切恒成立,求實數的取值范圍。

(I) (II) .
(III)實數的取值范圍為.

解析試題分析:(I)由點處的切線方程與直線平行,得該切線斜率為2,即
所以 4分
(II)由(I)知,顯然所以函數上單調遞減.當,所以函數上單調遞增,

時,函數上單調遞增,
因此        7分
所以  10分
(III)對一切恒成立,又


單調遞增,
單調遞減,
單調遞增,

所以
因為對一切恒成立,

故實數的取值范圍為  14分 
考點:導數的幾何意義,直線方程,應用導數研究函數的單調性及極(最)值,不等式恒成立問題。
點評:難題,本題(1)較為簡單,主要利用“曲線切線的斜率,等于在切點的導函數值”。本題(2)主要利用“在給定區間,導函數值非負,函數為增函數;導函數值非正,函數為減函數”,研究函數的單調區間。(3)作為不等式恒成立問題,通過構造函數,研究函數的單調性、極值(最值),使問題得到解決。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知處取得極值。
(Ⅰ)證明:
(Ⅱ)是否存在實數,使得對任意?若存在,求的所有值;若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(Ⅰ) 若函數處的切線方程為,求實數的值.
(Ⅱ)當時,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設l為曲線C:在點(1,0)處的切線.
(I)求l的方程;
(II)證明:除切點(1,0)之外,曲線C在直線l的下方

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(I)當時,討論的單調性;
(II)若時,,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,
(1)討論的單調區間;
(2)若對任意的,且,有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若,求函數的極小值;
(Ⅱ)設函數,試問:在定義域內是否存在三個不同的自變量使得的值相等,若存在,請求出的范圍,若不存在,請說明理由?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,一矩形鐵皮的長為8cm,寬為5cm,在四個角上截去四個相同的小正方形,制成一個無蓋的小盒子,問小正方形的邊長為多少時,盒子容積最大?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數處取得極值.
(1)求實數的值;
(2)若關于的方程在區間上恰有兩個不同的實數根,求實數的取值范圍;
(3)證明:對任意的正整數,不等式都成立.

查看答案和解析>>

同步練習冊答案