中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數 是自然對數的底數)的最小值為
(Ⅰ)求實數的值;
(Ⅱ)已知,試解關于的不等式
(Ⅲ)已知.若存在實數,使得對任意的,都有,試求的最大值.

(1)
(2)當時,不等式的解為;當時,不等式的解為
(3)3

解析試題分析:解:(Ⅰ)因為,所以,故
因為函數的最小值為,所以.              3分
(Ⅱ)由(Ⅰ)得,.
時,, 5分
故不等式可化為:
,           6分

所以,當時,不等式的解為
時,不等式的解為.          8分
(Ⅲ)∵當時,
.
∴原命題等價轉化為:存在實數,使得不等式對任意恒成立.        10分
.
,∴函數為減函數.       11分
又∵,∴.          12分
∴要使得對值恒存在,只須.     13分

且函數為減函數,
∴滿足條件的最大整數的值為3.   14分
考點:函數與不等式
點評:主要是考查了函數與不等式的綜合運用,以及導數研究函數單調性的求解屬于中檔題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知一家公司生產某種產品的年固定成本為10萬元,每生產1千件該產品需另投入2.7萬元,設該公司一年內生產該產品千件并全部銷售完,每千件的銷售收入為萬元,且
(Ⅰ)寫出年利潤(萬元)關于年產量(千件)的函數解析式;
(Ⅱ)年產量為多少千件時,該公司在這一產品的產銷過程中所獲利潤最大

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某單位設計的兩種密封玻璃窗如圖所示:圖1是單層玻璃,厚度為8 mm;圖2是雙層中空玻璃,厚度均為4 mm,中間留有厚度為的空氣隔層.根據熱傳導知識,對于厚度為的均勻介質,兩側的溫度差為,單位時間內,在單位面積上通過的熱量,其中為熱傳導系數.假定單位時間內,在單位面積上通過每一層玻璃及空氣隔層的熱量相等.(注:玻璃的熱傳導系數為,空氣的熱傳導系數為.)
(1)設室內,室外溫度均分別為,內層玻璃外側溫度為,外層玻璃內側溫度為,且.試分別求出單層玻璃和雙層中空玻璃單位時間內,在單位面積上通過的熱量(結果用表示);
(2)為使雙層中空玻璃單位時間內,在單位面積上通過的熱量只有單層玻璃的4%,應如何設計的大小?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設命題:函數上為減函數, 命題的值域為,命題函數定義域為
(1)若命題為真命題,求的取值范圍。
(2)若為真命題,為假命題,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若存在,使得成立,求實數的取值范圍;
(2)解關于的不等式
(3)若,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=.
(Ⅰ)求f(x)的單調區間;
(Ⅱ)證明:當f(x1)=f(x2)(x1≠x2)時,x1+x2<0.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲廠以x 千克/小時的速度運輸生產某種產品(生產條件要求),每小時可獲得利潤是元.
(1)要使生產該產品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產900千克該產品獲得的利潤最大,問:甲廠應該選取何種生產速度?并求最大利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(1)已知函數y=ln(-x2+x-a)的定義域為(-2,3),求實數a的取值范圍;
(2)已知函數y=ln(-x2+x-a)在(-2,3)上有意義,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

建造一個容積為50,高為2長方體的無蓋鐵盒,問這個鐵盒底面的長和寬各為多少時材料最省?

查看答案和解析>>

同步練習冊答案