(本小題滿(mǎn)分14分)如圖,已知直線(xiàn)OP1,OP2為雙曲線(xiàn)E:
的漸近線(xiàn),△P1OP2的面積為
,在雙曲線(xiàn)E上存在點(diǎn)P為線(xiàn)段P1P2的一個(gè)三等分點(diǎn),且雙曲線(xiàn)E的離心率為
.![]()
(1)若P1、P2點(diǎn)的橫坐標(biāo)分別為x1、x2,則x1、x2之間滿(mǎn)足怎樣的關(guān)系?并證明你的結(jié)論;
(2)求雙曲線(xiàn)E的方程;
(3)設(shè)雙曲線(xiàn)E上的動(dòng)點(diǎn)
,兩焦點(diǎn)
,若
為鈍角,求
點(diǎn)橫坐標(biāo)
的取值范圍.
(1)∴x1·x2=
;(2)
-
=1;(3)-![]()
,-2)∪(2,![]()
)
解析試題分析:(1)設(shè)雙曲線(xiàn)方程為
-
=1,由已知得
=![]()
∴
=
∴漸近線(xiàn)方程為y=±
x …………2分
則P1(x1,
x1) P2(x2,-
x2)
設(shè)漸近線(xiàn)y=
x的傾斜角為θ,則tanθ=
∴sin2θ=
=![]()
∴
=
|OP1||OP2|sin2θ=![]()
![]()
·![]()
∴x1·x2=
…………5分
(2)不妨設(shè)P分
所成的比為λ=2,P(x,y), 則
x=
y=
=
∴x1+2x2=3x x1-2x2=2y …………7分
∴(3x)2-(2y)2=8x1x2=36
∴
-
=1 即為雙曲線(xiàn)E的方程 …………9分
(3)由(2)知C=
,∴F1(-
,0) F2(
,0) 設(shè)M(x0,y0)
則y
=
x
-9,
=(-
-x0,-y0)
=(
-x0,-y0)
∴
·
=x
-13+y
=
x
-22 …………12分
若∠F1MF2為鈍角,則
x
-22<0
∴|x0|<![]()
又|x0|>2
∴x0的范圍為(-![]()
,-2)∪(2,![]()
) ……14分
考點(diǎn):本題考查了雙曲線(xiàn)的方程、性質(zhì)及數(shù)量積的運(yùn)用
點(diǎn)評(píng):本題主要考查雙曲線(xiàn)的標(biāo)準(zhǔn)方程和性質(zhì)、數(shù)量積的應(yīng)用等基礎(chǔ)知識(shí),考查曲線(xiàn)和方程的關(guān)系等解析幾何的基本思想方法
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分,(Ⅰ)小問(wèn)3分,(Ⅱ)小問(wèn)9分.)
直線(xiàn)
稱(chēng)為橢圓
的“特征直線(xiàn)”,若橢圓的離心率
.(1)求橢圓的“特征直線(xiàn)”方程;
(2)過(guò)橢圓C上一點(diǎn)
作圓
的切線(xiàn),切點(diǎn)為P、Q,直線(xiàn)PQ與橢圓的“特征直線(xiàn)”相交于點(diǎn)E、F,O為坐標(biāo)原點(diǎn),若
取值范圍恰為
,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
已知點(diǎn)
,
,△
的周長(zhǎng)為6.
(Ⅰ)求動(dòng)點(diǎn)
的軌跡
的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)
的直線(xiàn)
與曲線(xiàn)
相交于不同的兩點(diǎn)
,
.若點(diǎn)
在
軸上,且
,求點(diǎn)
的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
已知橢圓C的對(duì)稱(chēng)軸為坐標(biāo)軸,且短軸長(zhǎng)為4,離心率為
。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的焦點(diǎn)在y軸上,斜率為1的直線(xiàn)l與C相交于A,B兩點(diǎn),且
,求直線(xiàn)l的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知焦點(diǎn)在
軸上的橢圓
過(guò)點(diǎn)
,且離心率為
,
為橢圓
的左頂點(diǎn).
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)已知過(guò)點(diǎn)
的直線(xiàn)
與橢圓
交于
,
兩點(diǎn).
① 若直線(xiàn)
垂直于
軸,求
的大小;
② 若直線(xiàn)
與
軸不垂直,是否存在直線(xiàn)
使得
為等腰三角形?如果存在,求出直線(xiàn)
的方程;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知
,
,O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)E滿(mǎn)足:![]()
(Ⅰ) 求點(diǎn)E的軌跡C的方程;
(Ⅱ)過(guò)曲線(xiàn)C上的動(dòng)點(diǎn)P向圓O:
引兩條切線(xiàn)PA、PB,切點(diǎn)分別為A、B,直線(xiàn)AB與x軸、y軸分別交于M、N兩點(diǎn),求ΔMON面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的頂點(diǎn)與雙曲線(xiàn)
的焦點(diǎn)重合,它們的離心率之和為
,若橢圓的焦點(diǎn)在
軸上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知點(diǎn)F是拋物線(xiàn)C:
的焦點(diǎn),S是拋物線(xiàn)C在第一象限內(nèi)的點(diǎn),且|SF|=
. ![]()
(Ⅰ)求點(diǎn)S的坐標(biāo);
(Ⅱ)以S為圓心的動(dòng)圓與
軸分別交于兩點(diǎn)A、B,延長(zhǎng)SA、SB分別交拋物線(xiàn)C于M、N兩點(diǎn);
①判斷直線(xiàn)MN的斜率是否為定值,并說(shuō)明理由;
②延長(zhǎng)NM交
軸于點(diǎn)E,若|EM|=
|NE|,求cos∠MSN的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知雙曲線(xiàn)
的兩個(gè)焦點(diǎn)為
、
點(diǎn)
在雙曲線(xiàn)C上.
(1)求雙曲線(xiàn)C的方程;
(2)記O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)Q (0,2)的直線(xiàn)l與雙曲線(xiàn)C相交于不同的兩點(diǎn)E、F,若△OEF的面積為
求直線(xiàn)l的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com