已知
為奇函數(shù),且當
時,
.當
時,
的最大值為
,最小值為
,求
的值.
科目:高中數(shù)學 來源: 題型:解答題
某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的體積為
立方米,且
.假設該容器的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為
千元,設該容器的建造費用為
千元.![]()
(Ⅰ)寫出
關于
的函數(shù)表達式,并求該函數(shù)的定義域;
(Ⅱ)求該容器的建造費用最小時的
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知二次函數(shù)
,滿足
,且方程
有兩個相等的實根.
(1)求函數(shù)
的解析式;
(2)當![]()
時,求函數(shù)
的最小值
的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=
是奇函數(shù)
(1)求實數(shù)m的值
(2)若函數(shù)f(x)在區(qū)間
上單調(diào)遞增,求實數(shù)a的取值范圍
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com