已知F1,F2分別為橢圓C1:
=1(a>b>0)的上下焦點,其中F1是拋物線C2:x2=4y的焦點,點M是C1與C2在第二象限的交點,且|MF1|=
.![]()
(1)試求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=k(x+t)(t≠0)交橢圓于A,B兩點,若橢圓上一點P滿足
,求實數λ的取值范圍.
科目:高中數學 來源: 題型:解答題
設直線l:x-y+m=0與拋物線C:y2=4x交于不同兩點A,B,F為拋物線的焦點.
(1)求△ABF的重心G的軌跡方程;
(2)如果m=-2,求△ABF的外接圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線
的一條漸近線方程是
,它的一個焦點在拋物線
的準線上,點
是雙曲線
右支上相異兩點,且滿足![]()
為線段
的中點,直線
的斜率為![]()
(1)求雙曲線
的方程;
(2)用
表示點
的坐標;
(3)若
,
的中垂線交
軸于點
,直線
交
軸于點
,求
的面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定點A
(p為常數,p>0),B為x軸負半軸上的一個動點,動點M使得|AM|=|AB|,且線段BM的中點G在y軸上.![]()
(1)求動點M的軌跡C的方程;
(2)設EF為曲線C的一條動弦(EF不垂直于x軸),其垂直平分線與x軸交于點T(4,0),當p=2時,求|EF|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,動點
滿足:點
到定點
與到
軸的距離之差為
.記動點
的軌跡為曲線
.
(1)求曲線
的軌跡方程;
(2)過點
的直線交曲線
于
、
兩點,過點
和原點
的直線交直線
于點
,求證:直線
平行于
軸.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知動點P到點A(-2,0)與點B(2,0)的斜率之積為-
,點P的軌跡為曲線C.![]()
(1)求曲線C的方程;
(2)若點Q為曲線C上的一點,直線AQ,BQ與直線x=4分別交于M,N兩點,直線BM與橢圓的交點為D.求證,A,D,N三點共線.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com