某公司經(jīng)銷某種產(chǎn)品,每件產(chǎn)品的成本為6元,預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為
元(
)時,一年的銷售量為
萬件。
(1)求公司一年的利潤y(萬元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少時,公司的一年的利潤y最大,求出y最大值.
(1)
(
),(2)
,y=27
解析試題分析:(1)一年的利潤為一年的銷售量與每件產(chǎn)品的利潤的乘積,而每件產(chǎn)品的利潤為每件產(chǎn)品的售價(jià)與每件產(chǎn)品的成本之差.所以
,
.注意函數(shù)解析式必須明確函數(shù)定義域.(2)由于函數(shù)是三次函數(shù),所以利用導(dǎo)數(shù)求最值. 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/57/8/1swkn2.png" style="vertical-align:middle;" />
,所以由
0得
,因此當(dāng)
時y為增函數(shù),當(dāng)
時y為減函數(shù),又
,當(dāng)
時y為減函數(shù),∴當(dāng)
時,
(萬元)
(1)
=
(
) 6分
(2)![]()
8分
令
0,
,
10分
當(dāng)
時y為增函數(shù),當(dāng)
時y為減函數(shù) 12分
又
,當(dāng)
時y為減函數(shù)
∴當(dāng)
時,
(萬元) 14分
答:當(dāng)每件產(chǎn)品的售價(jià)為9元時,一年的利潤最大為27萬元。 15分
考點(diǎn):利用導(dǎo)數(shù)求函數(shù)最值
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數(shù)g(x)=x3+x2
(f′(x)是f(x)的導(dǎo)數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)求證:
×…×
<
(n≥2,n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1)試問函數(shù)能否在處取得極值,請說明理由;
(2)若,當(dāng)時,函數(shù)的圖像有兩個公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,其中m∈R.
(1)若0<m≤2,試判斷函數(shù)f (x)=f1 (x)+f2 (x)
的單調(diào)性,并證明你的結(jié)論;
(2)設(shè)函數(shù)
若對任意大于等于2的實(shí)數(shù)x1,總存在唯一的小于2的實(shí)數(shù)x2,使得g (x1) =" g" (x2) 成立,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)若函數(shù)
的圖象切x軸于點(diǎn)(2,0),求a、b的值;
(2)設(shè)函數(shù)
的圖象上任意一點(diǎn)的切線斜率為k,試求
的充要條件;
(3)若函數(shù)
的圖象上任意不同的兩點(diǎn)的連線的斜率小于l,求證
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一個如圖所示的不規(guī)則形鐵片,其缺口邊界是口寬4分米,深2分米(頂點(diǎn)至兩端點(diǎn)
所在直線的距離)的拋物線形的一部分,現(xiàn)要將其缺口邊界裁剪為等腰梯形.
(1)若保持其缺口寬度不變,求裁剪后梯形缺口面積的最小值;
(2)若保持其缺口深度不變,求裁剪后梯形缺口面積的最小值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
根據(jù)統(tǒng)計(jì)資料,某工藝品廠的日產(chǎn)量最多不超過20件,每日產(chǎn)品廢品率
與日產(chǎn)量
(件)之間近似地滿足關(guān)系式
(日產(chǎn)品廢品率![]()
).已知每生產(chǎn)一件正品可贏利2千元,而生產(chǎn)一件廢品則虧損1千元.(該車間的日利潤
日正品贏利額
日廢品虧損額)
(1)將該車間日利潤
(千元)表示為日產(chǎn)量
(件)的函數(shù);
(2)當(dāng)該車間的日產(chǎn)量為多少件時,日利潤最大?最大日利潤是幾千元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)求
的單調(diào)區(qū)間;
(2)若
在
上恒成立,求所有實(shí)數(shù)
的值;
(3)對任意的
,證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
(
).
(1)試討論函數(shù)
的單調(diào)性;
(2)設(shè)函數(shù)
,
,當(dāng)函數(shù)
有零點(diǎn)時,求實(shí)數(shù)
的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com