中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知數列滿足
(1)求證:數列為等差數列;
(2)求數列的通項公式;
(3)當時,若的值.

(1)詳見解析;(2);(3)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(2013·杭州模擬)已知數列{an}的前n項和Sn=-ann-1+2(n∈N*),數列{bn}滿足bn=2nan
(1)求證數列{bn}是等差數列,并求數列{an}的通項公式.
(2)設數列的前n項和為Tn,證明:n∈N*且n≥3時,Tn
(3)設數列{cn}滿足an(cn-3n)=(-1)n-1λn(λ為非零常數,n∈N*),問是否存在整數λ,使得對任意n∈N*,都有cn+1>cn

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在等差數列中,,.令,數列的前項和為.
(1)求數列的通項公式和;
(2)是否存在正整數,),使得,成等比數列?若存在,求出所有
的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知公比不為的等比數列的首項,前項和為,且成等差數列.
(1)求等比數列的通項公式;
(2)對,在之間插入個數,使這個數成等差數列,記插入的這個數的和為,求數列的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

是首項為,公差為的等差數列(d≠0),是其前項和.記bn=,
,其中為實數.
(1) 若,且,,成等比數列,證明:Snk=n2Sk(k,n∈N+);
(2) 若是等差數列,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設等差數列{}的前n項和為S,且S3=2S2+4,a5=36.
(1)求,Sn
(2)設,,求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設等差數列{ }的前n項和為Sn,且S4=4S2,
(1)求數列{}的通項公式;
(2)設數列{ }滿足,求{}的前n項和Tn
(3)是否存在實數K,使得Tn恒成立.若有,求出K的最大值,若沒有,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設等比數列{an}的前n項和為Sn.已知an+1=2Sn+2()
(1)求數列{an}的通項公式;
(2)在an與an+1之間插入n個數,使這n+2個數組成一個公差為dn的等差數列,
①在數列{dn}中是否存在三項dm,dk,dp(其中m,k,p成等差數列)成等比數列?若存在,求出這樣的三項,若不存在,說明理由;
②求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知數列的前項和為,若成等比數列,且時,
(1)求證:當時,成等差數列;
(2)求的前n項和

查看答案和解析>>

同步練習冊答案