設
:
,
:關于
的不等式
的解集是空集,試確定實數
的取值范圍,使得
或
為真命題,
且
為假命題。
(-∞,-2)∪[0,2]∪[3,+∞).
解析試題分析:解不等式
得0≤m<3,∵不等式x2-4x+m2≤0的解集為∅,∴Δ=16-4m2<0,∴m<-2或m>2. 因為
或
為真命題,
且
為假命題,所以p與q有且僅有一真.當p成立而q不成立時,0≤m≤2. 當p不成立而q成立時,m<-2或m≥3. 綜上所述,m∈(-∞,-2)∪[0,2]∪[3,+∞).
解:
化為
,∴0≤m<3. ------4分
∵不等式x2-4x+m2≤0的解集為∅,∴Δ=16-4m2<0,∴m<-2或m>2. ------8分
∵p或q真,p且q假,∴p與q有且僅有一真.------9分
當p成立而q不成立時,0≤m≤2. ------11分
當p不成立而q成立時,m<-2或m≥3. ------13分
綜上所述,m∈(-∞,-2)∪[0,2]∪[3,+∞).------14分
考點:復合命題真假
科目:高中數學 來源: 題型:解答題
分別寫出下列命題的逆命題、逆否命題,并判斷它們的真假:
(1)若q<1,則方程x2+2x+q=0有實根;
(2)若x2+y2=0,則x,y全為零.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設命題p:函數f(x)=lg(ax2-4x+a)的定義域為R;命題q:不等式2x2+x>2+ax,在x∈(-∞,-1)上恒成立,如果命題“p∨q”為真命題,命題“p∧q”為假命題,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com