中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數.已知函數有兩個零點,且
(1)求的取值范圍;
(2)證明隨著的減小而增大;
(3)證明隨著的減小而增大.

(1)的取值范圍是;(2)詳見試題分析;(3)詳見試題分析.

解析試題分析:(1)先求函數的導數,再分討論的單調性,將“函數有兩個零點”等價轉化為如下條件同時成立:“1°;2°存在,滿足;3°存在,滿足”,解相應的不等式即可求得的取值范圍;(2)由分離出參數.利用導數討論的單調性即可得: ,從而;類似可得.又由,得,最終證得隨著的減小而增大;(3)由,可得,作差得.設,則,且解得,可求得,構造函數,利用導數來證明隨著的減小而增大.
(1)由,可得.下面分兩種情況討論:
(1)時,上恒成立,可得上單調遞增,不合題意.
(2)時,由,得.當變化時,的變化情況如下表:







0



練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數若對任意x1∈[0,1],存在x2∈[1,2],使,求實數a的取值范圍?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數).
⑴ 若函數的圖象在點處的切線的傾斜角為,求上的最小值;
⑵ 若存在,使,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,曲線在點處的切線與軸交點的橫坐標為
(1)求
(2)證明:當時,曲線與直線只有一個交點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分13分)
設函數為常數,是自然對數的底數).
(Ⅰ)當時,求函數的單調區間;
(Ⅱ)若函數內存在兩個極值點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為圓周率,為自然對數的底數.
(1)求函數的單調區間;
(2)求這6個數中的最大數與最小數;
(3)將這6個數按從小到大的順序排列,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.若
(1)求的值;
(2)求的單調區間及極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設f(x)是定義在區間(1,+∞)上的函數,其導函數為f′(x).如果存在實數a和函數h(x),其中h(x)對任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),則稱函數f(x)具有性質P(a).
(1)設函數f(x)=ln x+ (x>1),其中b為實數.
①求證:函數f(x)具有性質P(b);
②求函數f(x)的單調區間;
(2)已知函數g(x)具有性質P(2).給定x1,x2∈(1,+∞),x1<x2,設m為實數,α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求的極值;
(2)若恒成立,求實數的取值范圍.

查看答案和解析>>
  • <th id="o57wg"><span id="o57wg"></span></th>

      <xmp id="o57wg"><td id="o57wg"></td>