中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數).
⑴ 若函數的圖象在點處的切線的傾斜角為,求上的最小值;
⑵ 若存在,使,求的取值范圍.

上的最小值為;⑵ 的取值范圍為

解析試題分析:⑴ 對函數求導并令導函數為0,看函數的單調性,即可求上的最小值;
⑵ 先對函數求導得,分兩種情況討論即可求的取值范圍.
(1)                           1分
根據題意,         3分
此時,,則.



















 
∴當時,最小值為.                  8分
(2)∵
①若,當時,
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知的導函數,,且函數的圖象過點
(1)求函數的表達式;
(2)求函數的單調區間和極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=ax2-(a+2)x+ln x.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當a>0時,若f(x)在區間[1,e]上的最小值為-2,求a的取值范圍;
(3)若對任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)若時有極值,求實數的值和的極大值;
(2)若在定義域上是增函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若的單調減區間是,求實數a的值;
(2)若函數在區間上都為單調函數且它們的單調性相同,求實數a的取值范圍;
(3)a、b是函數的兩個極值點,a<b,。求證:對任意的,不等式成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數在區間上的值域;
(2)是否存在實數a,對任意給定的,在區間上都存在兩個不同的,使得成立.若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)當為自然對數的底數)時,求的最小值;
(2)討論函數零點的個數;
(3)若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.已知函數有兩個零點,且
(1)求的取值范圍;
(2)證明隨著的減小而增大;
(3)證明隨著的減小而增大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=sinx,g(x)=mx- (m為實數).
(1)求曲線y=f(x)在點P(),f()處的切線方程;
(2)求函數g(x)的單調遞減區間;
(3)若m=1,證明:當x>0時,f(x)<g(x)+.

查看答案和解析>>