中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2012•重慶)設f(x)=alnx+
1
2x
+
3
2
x+1
,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線垂直于y軸.
(Ⅰ) 求a的值;
(Ⅱ) 求函數f(x)的極值.
分析:(Ⅰ) 求導函數,利用曲線y=f(x)在點(1,f(1))處的切線垂直于y軸,可得f′(1)=0,從而可求a的值;
(Ⅱ) 由(Ⅰ)知,f(x)=-lnx+
1
2x
+
3
2
x+1
(x>0),f′(x)=
-1
x
-
1
2x2
+
3
2
=
(3x+1)(x-1)
2x2
,確定函數的單調性,即可求得函數f(x)的極值.
解答:解:(Ⅰ) 求導函數可得f′(x)=
a
x
-
1
2x2
+
3
2

∵曲線y=f(x)在點(1,f(1))處的切線垂直于y軸.
∴f′(1)=0,∴a-
1
2
+
3
2
=0

∴a=-1;
(Ⅱ) 由(Ⅰ)知,f(x)=-lnx+
1
2x
+
3
2
x+1
(x>0)
f′(x)=
-1
x
-
1
2x2
+
3
2
=
(3x+1)(x-1)
2x2

令f′(x)=0,可得x=1或x=-
1
3
(舍去)
∵0<x<1時,f′(x)<0,函數遞減;x>1時,f′(x)>0,函數遞增
∴x=1時,函數f(x)取得極小值為3.
點評:本題考查導數知識的運用,考查導數的幾何意義,函數的單調性與極值,正確求導是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•重慶)設平面點集A={(x,y)|(y-x)(y-
1
x
)≥0},B={(x,y)|(x-1)2+(y-1)2≤1}
,則A∩B所表示的平面圖形的面積為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•重慶)設函數f(x)=Asin(ωx+φ)其中A>0,ω>0,-π<φ≤π)在x=
π
6
處取得最大值2,其圖象與x軸的相鄰兩個交點的距離為
π
2

(Ⅰ)求f(x)的解析式;
(Ⅱ)求函數g(x)=
6cos4x-sin2x-1
f(x+
π
6
)
的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•重慶)設函數f(x)在R上可導,其導函數為f′(x),且函數f(x)在x=-2處取得極小值,則函數y=xf′(x)的圖象可能是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•重慶)設f(x)=4cos(ωx-
π
6
)sinωx-cos(2ωx+π),其中ω>0.
(Ⅰ)求函數y=f(x)的值域
(Ⅱ)若f(x)在區間[-
2
π
2
]
上為增函數,求ω的最大值.

查看答案和解析>>

同步練習冊答案