中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知).
(Ⅰ)求的定義域;
(Ⅱ)求使取值范圍.

(1)  ;(2) 當時,取值范圍為;當時, 取值范圍為

解析試題分析:(1)由,所以函數的定義域為;      (4分)
(2)當時,由,所以使取值范圍為; (3分)
時,由,所以使取值范圍為.    (3分)
考點:函數定義域的求法;對數函數的性質;分式不等式的解法。
點評:(1)在解分式不等式時,最好讓x前的系數都為正的,不然容易出錯。(2)由,容易出錯,易忘掉真數大于0的這個限制。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

不等式選講已知函數
⑴當時,求函數的最小值;
⑵當函數的定義域為時,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
為奇函數,a為常數。
(1)求的值;并證明在區間上為增函數;
(2)若對于區間上的每一個的值,不等式恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其圖象在點 處的切線方程為
(1)求的值;
(2)求函數的單調區間,并求出在區間[-2,4]上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數).
(1)若的定義域和值域均是,求實數的值;
(2)若對任意的,總有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)
設函數為實常數)為奇函數,函數
(Ⅰ)求的值;
(Ⅱ)求上的最大值;
(Ⅲ)當時,對所有的恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


(1)求的表達式,并判斷的奇偶性;
(2)試證明:函數的圖象上任意兩點的連線的斜率大于0;
(3)對于,當時,恒有求m的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(滿分10分)
已知函數是定義在R上的偶函數,當時,.

(1)畫出函數的圖象(在如圖的坐標系中),并求出時,的解析式;
(2)根據圖象寫出的單調區間及值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)已知函數.
(1)設的定義域為A,求集合A;
(2)判斷函數在(1,+)上單調性,并用定義加以證明.

查看答案和解析>>

同步練習冊答案