中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

設函數R)。

(1)若,過兩點(0,0)、(,0)的中點作與軸垂直的直線,與函數的圖象交于點,求證:函數在點P處的切線點為(,0)。

(2)若),且當恒成立,求實數的取值范圍。

(1)同解析  (2)


解析:

1)由已知                         

                                   

所求,所求切線斜率為          

切線方程為

    所以,函數y=f (x)過點P的切線過點(b,0)             

(2)因為,所以

                            

時,函數上單調遞增,在()單調遞減,

上單調遞增.                                         

所以,根據題意有   即 

解之得,結合,所以         

時,函數單調遞增。                  

所以,根據題意有                                

, 整理得

,所以“”不等式無解。 

綜上可知:。                                     

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=
1
3
ax3-
1
2
x2+bx+1(a,b∈R)
,且函數f(x)在點(1,f(1))處的切線平行于x軸.
(Ⅰ)試用a表示b;
(Ⅱ)當a<
1
2
時,討論函數f(x)的單調性;
(Ⅲ)證明:當a=-3時,對?x1,x2∈[1,2],都有|f(x1)-f(x2)|≤
9
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
a
=(
2
,-2)
b
=(sin(
π
4
+2x),cos2x)
(x∈R).設函數f(x)=
a
b

(1)求f(-
π
4
)
的值;     
(2)求函數f(x)在區間[0,
π
2
]
上的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=|x-1|+|x-2|.
(1)解不等式f(x)>3;
(2)若f(x)>a對x∈R恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
x2+1
,對任意x1,x2∈R,恒有|
f(x1)-f(x2)
x1-x2
|<M,其中M是常數,則M的最小值是
 

查看答案和解析>>

同步練習冊答案