中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設函數.
(1)若函數圖像上的點到直線距離的最小值為,求的值;
(2)關于的不等式的解集中的整數恰有3個,求實數的取值范圍;
(3)對于函數定義域上的任意實數,若存在常數,使得都成立,則稱直線為函數
“分界線”.設,試探究是否存在“分界線”?若存在,求出“分界線”的方程,若不存在,請說明理由.
(1)
(2)
(3)

試題分析:解:(1)因為,得:    2分
則點到直線的距離為
                  4分
(2)法1:由題意可得不等式恰有三個整數解,
所以                                           6分
,由
函數的一個零點在區間內,
則另一個零點在區間內                              8分
所以                          10分
法2:恰有三個整數解,所以,即   6分

 
                                       8分
 
                                       10分
(3)設
可得
所以當
的圖像在處有公共點              12分
存在分界線,方程為
,恒成立,
即化為恒成立
                                 14分
下面證明

可得
所以恒成立,
恒成立
 所求分界線為:                            16分
點評:主要是考查了導數在研究函數中的運用,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

設函數為常數)
(Ⅰ)討論的單調性;
(Ⅱ)若,證明:當時,.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)討論函數的單調性;
(2)若函數的圖象在點處的切線的傾斜角為,對于任意的
 ,函數在區間 上總不是單調函數,
求實數的取值范圍;
(3)求證 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知,則=                           (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知f(x)=1nx-a(x-l),a∈R
(I)討論f(x)的單調性;
(Ⅱ)若x≥1時,石恒成立,求實數a的取值范圍,

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數時都取得極值
求a、b的值;
(2)函數f(x)的極值;
(3)若,方程恰好有三個根,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數處取得極值.
(1)求的值;
(2)求的單調區間;
(3)若當時恒有成立,求實數c的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數的圖象經過點M(1,4),曲線在點M處的切線恰好與直線垂直。
(1)求實數的值;
(2)若函數在區間上單調遞增,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知,則      

查看答案和解析>>

同步練習冊答案