中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

在平面直角坐標系中,點為動點,分別為橢圓的左右焦點.已知△為等腰三角形.(1)求橢圓的離心率;(2)設直線與橢圓相交于兩點,是直線上的點,滿足,求點的軌跡方程.

(1)  ; (2) .

解析試題分析:(1)設出焦點,由條件為等腰三角形,分析出,代入兩點間距離公式,利用消去,得a、c的關系,得出e的值;(2)由,推出橢圓方程,由,得,得,與橢圓:聯立得交點A,B的坐標,再表示代入中,整理得點的軌跡方程.
試題解析:(1)設
由題意,可得,即,             2分
整理得,得 (舍)或,所以.           4分 
(2)由(1)知,可得橢圓方程為.
直線方程為                           5分
兩點的坐標滿足方程組,消去y并整理得  6分
解得得方程組的解,           8分
不妨設,,設的坐標為
,,               10分
.
于是,         11分

化簡得,                       13分
代入
.因此,點的軌跡方程是.  14分
考點:1.兩點間距離公式;2.斜率公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

拋物線與直線相切,是拋物線上兩個動點,為拋物線的焦點,的垂直平分線軸交于點,且.
(1)求的值;
(2)求點的坐標;
(3)求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知動點與定點的距離和它到直線的距離之比是常數,記的軌跡為曲線.
(I)求曲線的方程;
(II)設直線與曲線交于兩點,點關于軸的對稱點為,試問:當變化時,直線軸是否交于一個定點?若是,請寫出定點的坐標,并證明你的結論;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

經過點且與直線相切的動圓的圓心軌跡為.點在軌跡上,且關于軸對稱,過線段(兩端點除外)上的任意一點作直線,使直線與軌跡在點處的切線平行,設直線與軌跡交于點
(1)求軌跡的方程;
(2)證明:
(3)若點到直線的距離等于,且△的面積為20,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是橢圓的右焦點,圓軸交于兩點,是橢圓與圓的一個交點,且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點與圓相切的直線的另一交點為,且的面積等于,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的兩個焦點分別為,且,點在橢圓上,且的周長為6.
(I)求橢圓的方程;
(II)若點的坐標為,不過原點的直線與橢圓相交于兩點,設線段的中點為,點到直線的距離為,且三點共線.求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在直角坐標平面內,y軸右側的一動點P到點的距離比它到軸的距離大
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設為曲線上的一個動點,點軸上,若為圓的外切三角形,求面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線,過軸上一點的直線與拋物線交于點兩點。
證明,存在唯一一點,使得為常數,并確定點的坐標。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線的頂點為原點,其焦點到直線:的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ) 求拋物線的方程;
(Ⅱ) 當點為直線上的定點時,求直線的方程;
(Ⅲ) 當點在直線上移動時,求的最小值.

查看答案和解析>>

同步練習冊答案