定義在
上的單調(diào)遞減函數(shù)
,若
的導(dǎo)函數(shù)存在且滿足
,則下列不等式成立的是( )
| A. | B. |
| C. | D. |
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)二次函數(shù)f(x)滿足
且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間
上,y= f(x)的圖象恒在y=2x+m的圖象上方,試確定實數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(-1)=0,試判斷函數(shù)f(x)零點的個數(shù);
(2)是否存在a,b,c∈R,使f(x)同時滿足以下條件:
①對任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②對任意x∈R,都有0≤f(x)-x≤
(x-1)2.若存在,求出a,b,c的值;若不存在,請說
明理由。
(3)若對任意x1、x2∈R且x1<x2,f(x1)≠f(x2),試證明:存在x0∈(x1,x2),使f(x0)=
[f(x1)+f(x2)]成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知函數(shù)
對任意的
滿足
(其中
是函數(shù)
的導(dǎo)函數(shù)),則下列不等式成立的是( )
| A. | B. |
| C. | D. |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com