(本小題滿分12分)
已知函數(shù)
,
,設(shè)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若以函數(shù)
圖像上任意一點
為切點的切線的斜率
恒成立,求實數(shù)
的最小值;
(Ⅲ)是否存在實數(shù)m,使得函數(shù)
的圖像與函數(shù)
的圖像恰有四個不同的交點?若存在,求出實數(shù)m的取值范圍;若不存在,說明理由。
(1)
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
。
(2) ![]()
(3) 當(dāng)
時,
的圖象與
的圖象恰有四個不同的交點
解析試題分析:解:(I)
,![]()
∵
,由
,∴
在
上單調(diào)遞增。
由
,∴
在
上單調(diào)遞減。
∴
的單調(diào)遞減區(qū)間為
,單調(diào)遞增區(qū)間為
。
(II)
,
恒成立![]()
![]()
當(dāng)
時,
取得最大值
。
∴
,∴![]()
(III)若
的圖象與
的圖象恰有四個不同得交點,即
有四個不同的根,亦即
有四個不同的根。
令
,
則![]()
當(dāng)x變化時,
、
的變化情況如下表:
由表格知:x ![]()
![]()
![]()
![]()
的符號+ - + -
的單調(diào)性![]()
![]()
![]()
![]()
,![]()
畫出草圖和驗證
可知,當(dāng)
時,![]()
![]()
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
(I)當(dāng)
時,求曲線
在點
處的切線方程;
(II)在區(qū)間
內(nèi)至少存在一個實數(shù)
,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若
在
上是增函數(shù),求實數(shù)
的取值范圍;
(2)若
是
的極值點,求
在
上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知a為實數(shù),![]()
(1)求導(dǎo)數(shù)
;
(2)若
,求
在[-2,2] 上的最大值和最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知函數(shù)
是實數(shù)集R上的奇函數(shù),且
在R上為增函數(shù)。
(Ⅰ)求
的值;
(Ⅱ)求
在
恒成立時的實數(shù)t的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知曲線f (x ) =" a" x 2 +2在x=1處的切線與2x-y+1=0平行
(1)求f (x )的解析式
(2)求由曲線y="f" (x ) 與
,
,
所圍成的平面圖形的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)
(
為自然對數(shù)的底數(shù)),
(
).
(1)證明:![]()
;
(2)當(dāng)
時,比較
與
的大小,并說明理由;
(3)證明:
(
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
,
(Ⅰ)討論函數(shù)
的單調(diào)區(qū)間和極值點;
(Ⅱ)若函數(shù)
有極值點
,記過點
與原點的直線斜率為
。是否存在
使
?若存在,求出
值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)
.
(1)若曲線
在點
處的切線與直線
垂直,求函數(shù)
的單調(diào)區(qū)間;
(2)若對于
都有
成立,試求
的取值范圍;
(3)記
.當(dāng)
時,函數(shù)
在區(qū)間
上有兩個零點,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com