中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知:函數f(x)=lg(3x-9)的定義域為A,集合B={x|2x-a<0,a∈R}.
(Ⅰ)求集合A;
(Ⅱ)求A∩B.
分析:(Ⅰ)根據函數成立的條件求函數的定義域,即可求集合A;
(Ⅱ)根據集合的基本運算即可求A∩B.
解答:解:(Ⅰ)要使函數有意義,
則3x-9>0,
∴x>2,
∴A={x|x>2}.
(Ⅱ)∵B={x|2x-a<0,a∈R}.
B={x|x<
a
2
, a∈R }

當a≤4時,A∩B=?;
當a>4時,A∩B={x|2<x<
a
2
}
點評:本題主要考查函數定義域的求法,以及集合的基本運算,比較基礎,要注意對集合B要進行分類討論.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知奇函數f(x)在(-∞,0)∪(0,+∞)上有意義,且在(0,+∞)上是減函數,f(1)=0,又有函數g(θ)=sin2θ+mcosθ-2m,θ∈[0,
π2
],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
(1)解不等式f(x)>0;
(2)求M∩N.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知奇函數f(x)的定義域為(-1,1),當x∈(0,1)時,f(x)=
2x2x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判斷f(x)在(0,1)上的單調性,并證明之.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知冪函數f(x)=xa的圖象過點(
1
2
2
2
)
,則f(x)在(0,+∞)單調遞

查看答案和解析>>

科目:高中數學 來源: 題型:

已知奇函數f(x)在區間(a,b)上是減函數,證明f(x)在區間(-b,-a)上仍是減函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知:函數f(x)=x3-6x2+3x+t,t∈R.
(1)①證明:a3-b3=(a-b)(a2+ab+b2
②求函數f(x)兩個極值點所對應的圖象上兩點之間的距離;
(2)設函數g(x)=exf(x)有三個不同的極值點,求t的取值范圍.

查看答案和解析>>

同步練習冊答案