(本題滿分12分)
已知數(shù)列
的通項(xiàng)公式為
,數(shù)列
的前n項(xiàng)和為
,且滿足![]()
(1)求
的通項(xiàng)公式;
(2)在
中是否存在使得
是
中的項(xiàng),若存在,請(qǐng)寫出滿足題意的一項(xiàng)(不要求寫出所有的項(xiàng));若不存在,請(qǐng)說(shuō)明理由.
(1)
(2) ![]()
![]()
![]()
解析試題分析:解:(I)當(dāng)
時(shí),
………………………………2分
當(dāng)
時(shí),![]()
兩式相減得:
,即:
…………………………………………6分
故{
}為首項(xiàng)和公比均為
的等比數(shù)列,
……………………………8分
(II)設(shè)
中第m項(xiàng)
滿足題意,即
,即![]()
所以![]()
![]()
(其它形如![]()
的數(shù)均可)……………………12分
考點(diǎn):等比數(shù)列
點(diǎn)評(píng):解決的關(guān)鍵是利用前n項(xiàng)和與其通項(xiàng)公式的關(guān)系式,對(duì)于n分類討論得到其通項(xiàng)公式,并能通過(guò)驗(yàn)證來(lái)說(shuō)明是否有滿足題意的項(xiàng),屬于基礎(chǔ)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
中,
,滿足
。
(1)求證:數(shù)列
為等差數(shù)列;
(2)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列
的前
項(xiàng)和為
,且方程
有一個(gè)根為
,
.
(1)證明:數(shù)列
是等差數(shù)列;
(2)設(shè)方程
的另一個(gè)根為
,數(shù)列
的前
項(xiàng)和為
,求
的值;
(3)是否存在不同的正整數(shù)
,使得
,
,
成等比數(shù)列,若存在,求出滿足條件的
,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列
的前
項(xiàng)和為
,
,![]()
,等差數(shù)列
滿足
.
(1)分別求數(shù)列
,
的通項(xiàng)公式;
(2)設(shè)
,求證
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
觀察下列三角形數(shù)表![]()
記第
行的第m個(gè)數(shù)為
.
(Ⅰ)分別寫出![]()
,![]()
,![]()
值的大小;
(Ⅱ)歸納出![]()
的關(guān)系式,并求出
關(guān)于n的函數(shù)表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}和{bn}滿足:
,其中λ為實(shí)數(shù),n為正整數(shù).
(Ⅰ)若數(shù)列{an}前三項(xiàng)成等差數(shù)列,求
的值;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知
為等比數(shù)列,
;
為等差數(shù)列
的前n項(xiàng)和,![]()
.
(1) 求
和
的通項(xiàng)公式;
(2) 設(shè)![]()
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知數(shù)列
的前
項(xiàng)和為
,對(duì)一切正整數(shù)
,點(diǎn)
都在函數(shù)
的圖像上.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)設(shè)
,求數(shù)列
的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)數(shù)列
前
項(xiàng)和為
,
.
(1)求證:數(shù)列
為等比數(shù)列;
(2)設(shè)
,數(shù)列
前
項(xiàng)和為
,求證:
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com