中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0。
(Ⅰ)求證:對m∈R,直線l與圓C總有兩個不同交點;
(Ⅱ)設l與圓C交與不同兩點A、B,求弦AB的中點M的軌跡方程;
(Ⅲ)若定點P(1,1)分弦AB為,求此時直線l的方程。

(Ⅰ)證明:圓的圓心為C(0,1),半徑為
∴圓心C到直線l:mx-y+1-m=0的距離
∴直線l與圓C相交,即直線l與圓C總有兩個不同交點。

(Ⅱ)解:當M與P不重合時,連結CM、CP,則CM⊥MP,

,則
化簡得:
當M與P重合時,x=1,y=1也滿足上式;
故弦AB中點的軌跡方程是
(Ⅲ)解:設,由,得
,化簡得,①
又由消去y得,,(*)
,   ②
由①②解得:
帶入(*)式解得:m=±1,
∴直線l的方程為x-y=0或x+y-2=0。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知圓C:x2+(y-
1
4
)2=
1
16
,動圓M與圓C外切,圓心M在x軸上方且圓M與x軸相切.
(I)求圓心軌跡M的曲線方程;
(II)若A(0,-2)為y軸上一定點,Q(t,0)為x軸上一動點,過點Q且與AQ垂直的直線與軌跡M交于D,B兩點(D在線段BQ上),直線AB與軌跡M交于E點,求
AD
AE
的最小值.

查看答案和解析>>

科目:高中數學 來源:數學教研室 題型:044

已知圓Cx2+(y1)2=5,直線lmxy+1m=0

1)求證:對,直線l與圓C總有兩個不同的交點;

2)設l與圓C交于AB兩點,若,求l的傾角;

(3)求弦AB的中點M的軌跡方程;

4)若定點P(11)分弦AB,求此時直線l的方程.

 

查看答案和解析>>

科目:高中數學 來源: 題型:044

已知圓Cx2+(y-1)2=1和圓C1(x-2)2+(y-1)2=1,現在構造一系列的圓C1C2C3…,Cn,…,使圓Cn+1Cn和圓C都相切,并都與Ox軸相切.

1)求圓Cn的半徑rn;(2)證明:兩個相鄰圓Cn-1Cn在切點間的公切線長為

3)求和

查看答案和解析>>

科目:高中數學 來源:2010-2011年河南省許昌高一下學期第四次五校聯考數學試卷 題型:解答題

((本小題滿分12分)

 已知圓Cx2+(y-1)2 =5,直線lmx-y+l-m=0,

 (1)求證:對任意,直線l與圓C總有兩個不同的交點。

 (2)設l與圓C交于AB兩點,若| AB | = ,求l的傾斜角;

 (3)求弦AB的中點M的軌跡方程;


 

查看答案和解析>>

同步練習冊答案