已知指數(shù)函數(shù)
滿足:g(2)=4,定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/92/a/jelki1.png" style="vertical-align:middle;" />的函數(shù)
是奇函數(shù)。
(1)確定
的解析式;(2)求m,n的值;
(3)若對任意的
,不等式
恒成立,求實(shí)數(shù)
的取值范圍
(1)m=2,n=1(2)![]()
解析試題分析:解:(1)
2分
(2)由(1)知:![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ff/f/1sleq3.png" style="vertical-align:middle;" />是奇函數(shù),所以
=0,即![]()
∴
, 又由f(1)= -f(-1)知
3分
(3)由(2)知
,
易知
在
上為減函數(shù)。
又因
是奇函數(shù),從而不等式:
等價(jià)于
,
因
為減函數(shù),由上式推得:![]()
即對一切
有:
,
從而判別式
5分
考點(diǎn):函數(shù)奇偶性和單調(diào)性的運(yùn)用
點(diǎn)評:主要是考查了函數(shù)的奇偶性和單調(diào)性的性質(zhì)的綜合運(yùn)用,結(jié)合概念來判定,并解不等式,屬于中檔題。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(I)當(dāng)
時(shí),求
在[1,
]上的取值范圍。
(II)若
在[1,
]上為增函數(shù),求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=
.
(1)若f(x)=2,求x的值;
(2)判斷x>0時(shí),f(x)的單調(diào)性;
(3)若
恒成立,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間
(2)函數(shù)
的圖象在
處切線的斜率為
若函數(shù)
在區(qū)間(1,3)上不是單調(diào)函數(shù),求m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,函數(shù)
的圖象與
軸相交于點(diǎn)
,且該函數(shù)的最小正周期為
.![]()
(1)、求
和
的值;
(2)、已知點(diǎn)
,點(diǎn)
是該函數(shù)圖象上一點(diǎn),
點(diǎn)
是
的中點(diǎn),當(dāng)
,
時(shí),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
是定義在
上的函數(shù),當(dāng)
,且
時(shí),有
.
(1)證明
是奇函數(shù);
(2)當(dāng)
時(shí),
(a為實(shí)數(shù)). 則當(dāng)
時(shí),求
的解析式;
(3)在(2)的條件下,當(dāng)
時(shí),試判斷
在
上的單調(diào)性,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)![]()
(1)求
,并求數(shù)列
的通項(xiàng)公式.
(2)已知函數(shù)
在
上為減函數(shù),設(shè)數(shù)列
的前
的和為
,
求證:![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com